

USB Solution – Instructor Guide

EB540-80-04 USB Solution 2 Copyright © 2014 Matrix TSL

EB540

USB
Solution

Instructor Guide

USB Solution – Instructor Guide

EB540-80-04 USB Solution 3 Copyright © 2014 Matrix TSL

Contents

About this course 4
Scheme of Work 5

1. Introduction to USB .. 5
2. Transfer Types .. 6
3. Setup ... 9
4. Learning about USB Device Capabilities ..10
5. The Matrix USB Training Solution ...11
6. The USB assignments ..13

6.1 Exercise 1 – Human Interface Device: Mouse ..13
6.2 Exercise 2 – Human Interface Device: Keyboard ..13
6.3 Exercise 3 - Human Interface Device: Data-Logger ..14
6.4 Exercise 4 - Communications Device: USB Terminal ..14
6.5 Exercise 5 - Communications Device: USB to RS232 protocol bridge14
6.6 Exercise 6 - Slave Device: Basic Slave Functionality ..15
6.7 Exercise 7 - Slave Device: Storage Scope ..15
6.8 Exercise 8 - Slave Device: Triggered Scope ...15

7. The USB C Code Library ..16
Solutions to Exercises 17

Exercise 1: ..17
Main:...17
Convert_To_Keypress_String macro ..19
Print_Out_Data macro ..20

Exercise 2: ..21
Main:...22
Convert_To_Keypress_String macro ..23
Display_Data macro ...25
Update_LEDs macro: ...26

Exercise 3: ..28
Main – part 1: ..28
Main – part 2: ..30
Start_Control macro: ...31
Get_Lock_Status macro: ..32

Exercise 4: ..33
Main – part 1: ..33
Main – part 2: ..34
Main – part 3: ..35

Exercise 5: ..36
Main – part 1: ..37
Main – part 2: ..38

Exercise 6: ..39
Main ...39
Slave_Service macro ..41

Exercise 7: ..42
Main ...42
Service macro ...43
tmr_int macro ..43

Exercise 8: ..44
Main ...45
Slave_Handle macro ..46
Int_Handle macro ...46

USB Solution – Instructor Guide

EB540-80-04 USB Solution 4 Copyright © 2014 Matrix TSL

About this course

Aims: The aim is to introduce the concepts involved in USB devices.

 On completing this course students will have learned about:

 the relationship between USB masters, hubs and endpoints;

 the electrical principles behind USB architecture;

 the components that make up a USB device;

 the options available for USB devices;

 the addressing schemes;

 USB signals and routing;

 low power and sleep modes;

 USB device drivers;

 USB devices that do not require drivers.

What you will need:

To complete this course, students will need the following equipment:

 Flowcode software

 E-blocks including:

 1 Multiprogrammer (PIC - EB006)

 with PIC18F4455 device and 4MHz crystal;

 1 Sensor E-Block (EB003);

 1 LED E-Block (EB004);

 1 LCD E-Block (EB005);

 1 Keypad E-Block (EB014);

 1 USB E-Block (EB055);

 1 RS232 E-Block (EB015);

Using this course:

This course presents students with a number of tasks listed in the exercises that follow the
USB overview. All the information needed to complete these is contained in the notes.

Before starting the exercises, students should familiarise themselves with the background
material.

Time:
To undertake all of the exercises will take around twelve hours.

Important note:
Information presented here is correct at the time of publication.
Please check the Matrix web site, www.matrixltd.com for the latest E-Blocks documentation.

http://www.matrixltd.com/

USB Solution – Instructor Guide

EB540-80-04 USB Solution 5 Copyright © 2014 Matrix TSL

Scheme of Work

Section Notes for instructors
Timing
(minutes)

1. Introduction to USB

1.1 Preamble

Students familiarise themselves with the course ahead.
They can use a web browser to review the differences between
various versions of USB, from USB1.0 to USB 3.0.

5 -10

1.2 Key
Advantages of USB

This section lists the main advantages, and drawbacks, of the
USB protocol. Again, they can use the internet to familiarise
themselves with other communication protocols such as
Firewire and RS232.

5 - 15

1.3 Introduction to
USB

This section compares the performance of USB 2.0 devices
with Firewire and Serial communications links.

It then gives a glossary of terms used in USB systems,
including:
master / slave configuration;
USB power;
connectors;
functions;
endpoints;
pipes;
classes
device drivers
addressing
enumeration
interface speeds
noise immunity.
USB is a network of attachments connected to a host
computer. The attachments are either functions or hubs, and
together they are known as devices.

The host has a hub embedded in it called the root hub, the
interface between the computer and the USB ports it houses.
External devices which offer more than one function are
usually combined with a hub, and are then called compound
devices. Hubs may be connected to other hubs in a tiered
arrangement, but logically the system appears as a linear bus.

These terms may mean little until the student has had hands-
on experience of the USB protocol later in the course.
However, it pays to spend time on these terms now. At least
students will know where to find some explanation of these
terms if problems arise.

No attempt has been made to tackle physical layer issues,
such as the use of NRZI for signalling, and „bit stuffing‟. The
terms „J state‟ „K state‟ and „Single-ended zero (SE0)‟ are not
used. Instructors wishing to expand on these issues will find
the solution a fitting tool to facilitate this.

20 - 30

USB Solution – Instructor Guide

EB540-80-04 USB Solution 6 Copyright © 2014 Matrix TSL

2. Transfer Types

2.1 Transfer
Types

The USB protocol is used across an increasingly wide variety
of applications. Different situations demand different kinds of
data transfer.

This section outlines the differences between control,
interrupt, bulk and isochronous transfers. Depending on the
situation, the designer can choose to prioritise data validity,
latency (delay) or bandwidth by choosing the appropriate
transfer type. Once again, the students can use the internet to
reinforce the ideas introduced here, or the instructor may
choose to spend time supporting them.

Students should be warned that, despite the name, interrupt
transfers do not cause interrupts. The text explains that this
transfer type is used where previously devices would use
interrupts to initiate communication.

15 - 30

2.2 Transfers and
Transactions

It is important that students understand and use the correct
terminology in USB systems. This section distinguishes
between data transfers and transactions.

A data transfer may be split across several individual
transactions. These transactions may occur across a number
of frames. The reality is that the host will send out frames
every millisecond. These frames will contain a number of
transactions, sandwiched into time slots within the frame.
Several transactions within a frame may be addressed to the
same device.

Each transaction is made up from a number of packets,
known as token, data and handshake packets. Some sources
refer to these as phases. Each has its own function, and as a
result, contains different sets of fields.

Students should study the diagrams carefully, so that they
understand them. It may be profitable for them to make copies
of them for their records.

15 - 30

2.3 Transactions

This section examines the four transaction types – start of
frame, token, data and handshake. The purpose of each is
described briefly, and their structure is outlined
diagrammatically.

As its name suggests, the Start-of-frame packet is found at
the beginning of every frame. In other words, the host
produces one of these every millisecond.

One job of the Start-of-frame packet is to track frame number.
One of the fields, the frame number, identifies each frame of
the transaction. Devices can use this to confirm which
transaction has been received, or can use it as a timing
source. As it is eleven bits long, it can cope with 211 (= 2048)
frames. When the maximum is reached, the frame count
resets.

20 - 30

USB Solution – Instructor Guide

EB540-80-04 USB Solution 7 Copyright © 2014 Matrix TSL

2.3 Transactions
 continued...

The frame can contain eight microframes, when working at
high speed. All eight carry the same frame number.

The text goes on to outline the three types of data packet –
Setup, IN and OUT. The communication „pipes‟ that are set up
between the host and peripheral devices are uni-directional.
One task of a data packet is to define the direction of data
flow. This is always taken from the viewpoint of the host. IN
means flowing in to the host and so out from the peripheral.
OUT means flowing out of the host, and so in to the
peripheral. One implication of this, explored later, is that „Set‟
requests, where the host imposes a configuration value on the
peripheral device, have direction OUT, whereas „Get‟
transactions, where the host requests settings from the
peripheral device, have direction IN. The Setup process has
its own section later.

The idea of having two varieties of data packet, called Data0
and Data1, offers another form of error checking, where data
is transmitted using multiple transactions. The first of these
will use a Data0 packet, the second a Data 1, then a Data0,
and so on. The data toggle value is specified in the PID. Both
transmitting and receiving devices can monitor the data type
to check for missing transactions.

The receiver of data will reply with a handshake packet to
indicate the status of the transfer. Hence, for an OUT transfer,
the peripheral device replies by sending the handshake
packet, whereas for IN communications, the host replies.
Peripheral devices can reply with ACK (valid data was
received,) NAK (the device is busy and did not receive the
data,) or STALL (the device does not understand the transfer,
or is not active.) A host can only send ACKs. If the receiver
detects an error, it returns no handshake packet.

2.4 USB packets

USB transmissions are synchronous, thanks to NRZI
encoding and bit stuffing, which allow the receiver to
synchronise its clock with that of the transmitter. In addition,
each packet starts with a synchronising field, a series of
alternating bits, to ensure that the clocks in the host and
peripheral device are in synchronisation.

A PID field follows. The term „PID‟ has two possible meanings
in the USB world. Here, it means Packet IDentifier. When
referring to whole devices, it can mean Product Identifier, a
16-bit number used to identify the appropriate device driver.
The Packet ID is used to identify the type of packet being
sent. e.g. token, data, handshake etc. The table shows how it
does this. The student text says that the four most-significant
bits are the inverse of the four least significant bits. To be
precise, they are the 1‟s complement of the four least-
significant bits. It is left to the instructor to decide whether to
expand on this with the students.

20 - 30

USB Solution – Instructor Guide

EB540-80-04 USB Solution 8 Copyright © 2014 Matrix TSL

2.4 USB packets
 continued...

The address field contains a seven bit address, allowing 27
(=128) addresses. Only 127 of these are assigned as device
addresses. Address 0 is reserved for the mandatory default
endpoint on all devices, so that the host can send control
transfers.

The endpoint field identifies the endpoint (function) to which
the packet is directed. Each endpoint has a number from 1 to
15, expressed as a four-bit binary number.

The CRC (cyclic redundancy check) is included to check the
data for errors. A mathematical operation is applied to the
data at the transmitting device, and the result of that operation
is sent as part of the transfer. The same mathematical
operation is applied to the data at the receiver. The result is
compared to that sent in the CRC. If they are the same, there
is no error. If the results are different, then an error is present.

The end-of-packet field indicates that the transaction is
complete. The bus then goes back to its idle state.

USB Solution – Instructor Guide

EB540-80-04 USB Solution 9 Copyright © 2014 Matrix TSL

3. Setup

3.1 3.1 The Setup
stage

The purpose of the Setup stage is explained, as the
process by which the host learns about the recently
attached device, and then each of the three phases,
token, data and handshake are described.

The core of the transaction is the request for
information. The data phase contains five fields, which
occupy eight bytes. The first, bmRequestType, specifies
the type of request, its direction and the recipient‟s
address. The next, bRequest, specifies the actual
request. Its contents depend on the type of request
(standard, class, or vendor) identified in the
bmRequestType field. The next field, wValue, occupies
two bytes and contains information for the recipient from
the host. The significance of the information depends on
the type of request. For example, the Set_Address
request will send the new address in the wValue field.
Next comes another two byte field, called wIndex. Again
it is used by the host to pass information to the device.
This information again depends on the request. It may
include an endpoint address, and interface number etc.
Finally, comes another two byte field, wLength, The
host will specify how many data bytes are sent.

The manual then includes a series of tables describing
the structure of a number of different requests. The
purpose is to illustrate what goes into these requests,
and how they are transmitted. It is reference material to
aid later study. It is not intended that the students
should in any way „learn‟ these tables.

The handshake phase takes place if the device receives
the full transaction without detecting any errors.

20 - 30

USB Solution – Instructor Guide

EB540-80-04 USB Solution 10 Copyright © 2014 Matrix TSL

4. Learning about USB Device Capabilities

4.1 Descriptors

4.2 USB Device
Descriptors

4.3 USB
Configuration
Descriptors

4.4 USB Interface
Descriptors

4.5 USB Endpoint
Descriptors

4.6 USB String
Descriptors

During enumeration, the host learns about the capabilities
offered by the device, using control transfers which request a
series of descriptors.

These start with the broad brush strokes of the Device
Descriptor, which cover the global properties of the device. It
also specifies all of the subordinate descriptors needed by the
host. This is followed by one of the Configuration Descriptors,
which include its power requirements, the Interface
descriptors, providing information about a feature of the
device, including class and protocol information, the endpoint
descriptors, which specifies the maximum packet size the
endpoint is capable of handling, and finally any optional
descriptors.

Again, the purpose is illustrative and to act as a reference. It is
not intended that the students should in any way „learn‟ these
tables.

20 - 30

USB Solution – Instructor Guide

EB540-80-04 USB Solution 11 Copyright © 2014 Matrix TSL

5. The Matrix USB Training Solution

5.1 Solution
Overview

This section starts with a description of the hardware provided
in the Matrix kit. It includes a diagram showing the layout and
connections for the USB solution.

5

5.2 Default

connections
and settings

Students should read this while keeping an eye on the
hardware itself. They should familiarise themselves with the
layout of the Multiprogrammer board, and in particular, identify
the position of its various ports.

They should identify and check carefully the jumper settings
described here.

Detailed information on all the E-Block hardware is available
from the Matrix website. Students should be encouraged to
read and use this information.

5 - 10

5.3 Flowcode and

USB

5.3.1 USB Serial
Component

5.3.2 USB HID
Component

5.3.3 USB Slave
Component

5.3.4 Enumeration
Wait Setting

To facilitate USB connections to the host computer, Flowcode
comes complete with three USB components, a serial
component, a HID component and a slave component. Their
properties are described. Each requires its own device driver
and descriptors, and comes with its own set of component
macros.

Students should run Flowcode in order to examine these
components, their properties and associated macros.

They will need additional applications on the computer,
specifically Hyperterminal (or equivalent) and Labview. They
may need support in setting up and using these, in addition to
the instructions that accompany the exercises.

15 - 25

5.4 USB Serial

Device

5.4.1 Installing the
Device Driver

5.4.2 USB Serial
Device and
Hyperterminal

Like all peripheral devices, a device driver is needed so that
the computer can communicate with it. This driver should be
generated from within Flowcode, as described in the
instructions, so that the configuration matches that of the
Serial Component itself.

This section may be done by students only if the network
grants them sufficient privileges. Otherwise, the instructor or
IT Support staff may have to do it. In either case, the students
should read through the notes and be aware of the processes.

The Serial Component relies on the RS232 protocol for
communication between the host computer and the peripheral
device. The word „serial‟ indicates that data is sent one bit at a
time down the link. The RS232 protocol encodes the data and
defines the electrical and timing characteristics of the signals.
Though dating back to the early 1960‟s, when the protocol
was used to communicate between mainframe computers and
dumb terminals, it is still commonly used in serial links, though
it is slowly being replaced by USB connections.

Hyperterminal displays messages passed to and from the
host computer, and is used for that purpose here.

20 - 40

USB Solution – Instructor Guide

EB540-80-04 USB Solution 12 Copyright © 2014 Matrix TSL

5.5 USB Slave
Component

5.5.1 Installing the

Device Driver

5.5.2 USB Slave

and Visual
Basic

The next Flowcode component is the USB Slave. This simply
responds to communications from the host. The host can
initiate processes such as sampling an analogue input on the
microcontroller.

As with the Serial Device, a driver must be generated from
within Flowcode to allow the device to communicate with the
host. As before, this is done after the component properties
are determined in Flowcode to ensure that they match.

As before, some networks may not grant sufficient privileges
to students to allow them to install drivers. In that case, the
task must be carried out either by the Instructor, or by IT
Support staff. Nevertheless, the student should read through
this section so that they are aware of the issues raised.

This time Visual Basic will be used to configure the
microcontroller, using the „.dll‟ provided on the accompanying
CD-ROM.

15 - 30

5.6 USB HID
Custom
Descriptor
Generation

Whereas the USB Serial and Slave components come with
serviceable device drivers already created, the USB HID
devices use a descriptor, chosen from the solution CD, or
generated using software downloaded from the USB
developers‟ website – www.usb.org/developers/hidpage/

5

5.7 PIC 18F4455
Configuration

This section includes a table showing the configuration
needed by the PIC 18F4455, used on the E-Blocks
Multiprogrammer board. The chip can be configured in
Flowcode by using the „Configure‟ tab in the „Project Options‟
window which is accessed via the „Build‟ menu.

5

http://www.usb.org/developers/hidpage/

USB Solution – Instructor Guide

EB540-80-04 USB Solution 13 Copyright © 2014 Matrix TSL

Section Notes for instructors
Timing
(minutes)

6. The USB assignments

This section lists the assignments and gives a brief outline of
what each covers.

5

6.1 Exercise 1 – Human Interface Device: Mouse

6.1.1 Introduction

This is the first of a series of practical assignments using
Flowcode to control USB devices.

The aim is to set up a USB mouse, using the E-Blocks
Keypad as a data source. The diagram shows which keys
control which mouse functions

The students are also given information about the „Initialise
HID‟ macro, and the settings needed to configure the USB
HID device.

Detailed instructions on how to build the Flowcode program
are given. It is assumed that students already know how to:

 load new components into a Flowcode program;

 configure component properties;

 insert a macro into the program, and configure it;

 add a new variable to a program;

 add and configure a time delay.

A suitable Flowcode program is described in the „Solutions to
Exercises‟ section.

30 6.1.2 Objective

6.1.3 Target
Microcontroller

6.1.4 Flowcode USB
HID component

6.1.5 USB HID
component settings

6.1.6 The Flowcode
program in detail

6.1.7 A Generic
USB Mouse

6.1.8 What to do

6.1.9 Further work

6.2 Exercise 2 – Human Interface Device: Keyboard

6.2.1 Introduction The aim is to create a generic USB keyboard. The E-Blocks
keypad will control the keyboard, and provide its input. The E-
Blocks LED board will indicate when Caps Lock, Num Lock or
Scroll lock are activated.

The outline describes the operation of the CheckRx and the
ReceiveByte component macros. It describes how the
peripheral device „knows‟ when the Caps Lock, Num Lock
and Scroll lock keys are pressed.

It details the settings needed to operate the USB HID
component in this program, and detailed notes on how to
construct the program.

A suitable Flowcode program is described in the „Solutions to
Exercises‟ section.

30

6.2.2 Objective

6.2.3 Flowcode USB
HID component

6.2.4 USB HID
component settings

6.2.5 The Flowcode
program in detail

6.2.6 A Generic USB
Keyboard

6.2.7 What to do

6.2.8 Further work

USB Solution – Instructor Guide

EB540-80-04 USB Solution 14 Copyright © 2014 Matrix TSL

6.3 Exercise 3 - Human Interface Device: Data-Logger

6.3.1 Introduction

The aim is to use the keyboard created in the previous
program in a data logging exercise.

The data comes from sampling the output of the light-sensing
unit built into the E-Blocks Sensors board.

Data logging is controlled by the Num Lock key. The data is
transferred to the Microcoft Excel spreadsheet application,
which must be available on the computer.

Detailed instructions on how to build the Flowcode program are
provided in the „What to do‟ section.

A suitable Flowcode program is described in the „Solutions to
Exercises‟ section.

30

6.3.2 Objective

6.3.3 USB HID
component settings

6.3.4 The Flowcode
program in detail

6.3.5 Storing the
data

6.3.6 What to do

6.3.7 Further work

6.4 Exercise 4 - Communications Device: USB Terminal

6.4.1 Introduction

The aim is to exchange ASCII data between the USB solution
board and the computer, via a serial connection. The data
received from the computer will be displayed on the E-Blocks
LCD device.

The exercise instructions describe the „Initialise‟ macro, and
the role it plays. Students are shown how to configure the USB
Serial component.

The function of the ReadByte, SendByte, ReadString and
SendString macros is described, and the significance of the
return value.

Detailed instructions on how to build the Flowcode program are
given.

A suitable Flowcode program is described in the „Solutions to
Exercises‟ section.

30

6.4.2 Objective

6.4.3 Flowcode USB
Serial component

6.4.4 USB Serial
component settings

6.4.5 The Flowcode
program in detail

6.4.6 A Generic
USB Serial Port

6.4.7 What to do

6.4.8 Further work

6.5 Exercise 5 - Communications Device: USB to RS232 protocol bridge

6.5.1 Introduction

The aim is to show how to set up a legacy RS232 COM port
device. The RS232 E-Blocks board converts signals into the
RS232 standard. A terminal emulation package such as
HyperTerminal, running on the computer, is used to connect to
the device.

This is an example of a protocol bridge, where signals encoded
in one protocol are converted into those of a different protocol.
The instructions highlight the importance of data transmission
rates in avoiding data bottlenecks.

Detailed instructions on how to build the Flowcode program are
given.

A suitable Flowcode program is described in the „Solutions to
Exercises‟ section.

30

6.5.2 Objective

6.5.3 USB Serial
component settings

6.5.4 The Flowcode
program in detail

6.5.5 USB to Serial
Bridge

6.5.6 What to do

6.5.7 Further Work

USB Solution – Instructor Guide

EB540-80-04 USB Solution 15 Copyright © 2014 Matrix TSL

6.6 Exercise 6 - Slave Device: Basic Slave Functionality

6.6.1 Introduction

The aim is to enable the computer to control the operation of
the microcontroller on the E-Blocks Multiprogrammer board. In
this way, the microcontroller can perform some of the control
tasks, and relieve the computer CPU of that burden, an
example of distributed processing.

The microcontroller acts as a slave to the CPU. It will control
the LCD display, and scan the keypad for input signals,
passing relevant information to the CPU when directed to do
so.

The role of the macros associated with the Slave device are
described, along with the configuration settings needed. The
use of a custom dll and driver support files is described.

In this exercise, Microsoft Visual Basic is used to configure the
application. This must be available on the computer, and
students should have a basic familiarity with this application.

Detailed instructions on how to build the Flowcode program are
given.

A suitable Flowcode program is described in the „Solutions to
Exercises‟ section.

30

6.6.2 Objective

6.6.3 Flowcode USB
Slave component

6.6.4 USB Slave
component settings

6.6.5 The Flowcode
program in detail

6.6.6 A USB Slave
Transaction

6.6.7 Driver Support
Files

6.6.8 What to do

6.6.9 Further Work

6.7 Exercise 7 - Slave Device: Storage Scope

6.7.1 Introduction

The aim is to sample an analogue signal using an Analogue-
To-Digital converter, to store the results and to investigate the
properties involved in these processes.

The student is introduced to customising parameters within the
program to optimise the transfer of data between the host and
the peripheral devices. This is done by modifying the
underlying C code, following comprehensive instructions.

Detailed instructions on how to build the Flowcode program are
given. A suitable Flowcode program is described in the
„Solutions to Exercises‟ section.

30

6.7.2 Objective

6.7.3 The Flowcode
program in detail

6.7.4 Component
Customisation

6.7.5 What to do

6.7.6 Further Work

6.8 Exercise 8 - Slave Device: Triggered Scope

6.8.1 Introduction

The aim is to extend the functionality of the slave component
created in the previous program, allowing it to control the
sampling process.

The sampling process now occurs on one of two ADCs,
specified by the controller. As before, Visual Basic is used to
create the application.

Detailed instructions on how to build the Flowcode program are
given. A suitable Flowcode program is described in the
„Solutions to Exercises‟ section.

30

6.8.2 Objective

6.8.3 The Flowcode
program in detail

6.8.4 What to do

6.8.5 Further Work

USB Solution – Instructor Guide

EB540-80-04 USB Solution 16 Copyright © 2014 Matrix TSL

7. The USB C Code Library

Students are given the location of the C code used to drive the USB components.

USB Solution – Instructor Guide

EB540-80-04 USB Solution 17 Copyright © 2014 Matrix TSL

Solutions to Exercises

Exercise 1:

Keypad Properties

LCD Properties

USB Serial Properties

USB Solution – Instructor Guide

EB540-80-04 USB Solution 18 Copyright © 2014 Matrix TSL

Main:

Open Properties box:
Delay value: 2 s

Open Properties box:
Display name: Start LCD
Component: LCDDisplay(0))
Macro: Start

Open Properties box:
 Display name: Define Movement Speed
Open Variables box:
 Create new variable: byte, mouse_speed
 Calculations: mouse_speed = 5

Open Properties box:
Display name: USB Failed
Component: LCDDisplay(0)
Macro: PrintString
Parameter "USB Startup Failed”

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

Open Properties box:
Display name: Scan Keypad
Component: KeyPad(0)

Open Variables box:
Create new variable: byte, keypad
Macro: GetAscii
Return Value keypad

i

Open Properties box:
Display name: Initialise Mouse Data

Open Variables box:
Create new variable: string, test[3]
Calculations: test[0]=0x00
 test[1] =0x00
 test[2]=0x00

 Open Properties box:
Display name: Loop
Loop while: 1
Test the loop at the: Start

Open Properties box:
Display name: If Key Pressed?
If: keypad<255

Open Properties box:
Display name: Convert and send data
Macro: Convert_To_Keypress_String

Open Properties box:
Display name: Was There An
Error
If: retval

Open Properties box:
Display name: USB Started
Component: LCDDisplay(0)
Macro: PrintString
Parameter "USB Startup OK”

Open Properties box:
Display name: Print USB Starting
Component: LCDDisplay(0)
Macro: PrintString
Parameter "USB Starting”

Macro: Init_Network

Open Properties box:
Display name: Initialise USB
Component: USBHID(0)
Macro: Initialise

Open Variables box:
Create new variable: byte, retval
Return Value retval

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
 Macro: Clear

USB Solution – Instructor Guide

EB540-80-04 USB Solution 19 Copyright © 2014 Matrix TSL

Convert_To_Keypress_String macro

1. Switch Case icon -

Open Properties box:
Display name: Change X and Y
Calculations: test[1]= - mouse_speed
 test[2] = - mouse_speed

Open Properties box:
Display name: Change X
Calculations: test[1]= - mouse_speed

Open Properties box:
Display name: Change Y
Calculations: test[2] = - mouse_speed

Open Properties box:
Display name: Change X and Y
Calculations: test[1]= mouse_speed
 test[2] = - mouse_speed

Open Properties box:
 Display name: Change X
 Calculations: test[1]=

mouse_speed

Open Properties box:
Display name: Change X and Y
Calculations: test[1]= mouse_speed
 test[2] = mouse_speed

Open Properties box:
Display name: Change Y
Calculations: test[2]= mouse_speed

Open Properties box:
 Display name: Change Left Click
 Calculations: test[0]= 0x01

Open Properties box:
Display name: Change Right Click
Calculations: test[0] =0x02

Open Properties box:
Display name: Change X and Y
Calculations: test[1]= -mouse_speed
 test[2] = mouse_speed

USB Solution – Instructor Guide

EB540-80-04 USB Solution 20 Copyright © 2014 Matrix TSL

2. Other icons –

Open Properties box:
Display name: Transmit data to USB
Component: USBHID(0)
Macro: SendDataDirect
Parameter: test

Open Properties box:
Display name: Set data to nothing pressed
Calculations: test[0]=0x00
 test[1] =0x00
 test[2]=0x00

Open Properties box:
Delay value: 10 ms

Open Properties box:
Display name: Send data
Component: USBHID(0)
Macro: SendDataDirect
Parameter: test

Macro:
Init_Network

Open Properties box:
Display name: Wait for key release
Loop while: keypad = keypad_temp
Test the loop at the: Start

Open Properties box:
Display name: Initialise old Keypass

Open Variables box:
Create new variable: byte, keypad_temp
Calculations: keypad_temp = keypad

Open Properties box:
Display name: Update key presses
Component: KeyPad(0)
Macro: GetAscii
Return Value: keypad_temp

Open Properties box:
Display name: Print_Out_Data
Macro: Print_Out_Data

USB Solution – Instructor Guide

EB540-80-04 USB Solution 21 Copyright © 2014 Matrix TSL

Print_Out_Data macro

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

Open Properties box:
Display name: Print Out Keypad Char
Component: LCDDisplay(0)
Macro: PrintAscii
Parameter: keypad

 Open Properties box:
Display name: Move to second line
Component: LCDDisplay(0)
Macro: Cursor
Parameter: 0, 1

Open Properties box:
Display name: Print Out Byte0
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[0]

 Open Properties box:
Display name: Print Space Characters
Component: LCDDisplay(0)
Macro: PrintString
Parameter: “ , “

Open Properties box:
Display name: Print Out Byte2
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[2]

Open Properties box:
Display name: Print Space Characters
Component: LCDDisplay(0)
Macro: PrintString
Parameter: “ , “

Open Properties box:
Display name: Print Out Byte1
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[1]

USB Solution – Instructor Guide

EB540-80-04 USB Solution 22 Copyright © 2014 Matrix TSL

Exercise 2:

Keypad Properties

LCD Properties

USB HID Properties

LED Properties

USB Solution – Instructor Guide

EB540-80-04 USB Solution 23 Copyright © 2014 Matrix TSL

Open Properties box:
Display name: Print USB Starting
Component: LCDDisplay(0)
Macro: PrintString
Parameter "USB Starting”

Macro: Init_Network

Open Properties box:
Display name: Start LCD
Component: LCDDisplay(0))
Macro: Start

Open Properties box:
Display name: Clear LCD
Component:
LCDDisplay(0)
 Macro: Clear

Open Properties box:
Display name: Initialise USB
Component: USBHID(0)
Macro: Initialise

Open Variables box:
Create new variable: byte, retval
Return Value retval

Open Properties box:

Display name: Was There An Error
If: retval

Main:

Open Properties box:
Display name: If Key Pressed?
If: keypad<255

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
 Macro: Clear

Open Properties box:
Delay value: 2 s

Open Properties box:
Display name: Initialise Keyboard Data

Open Variables box:
Create new variable: string, test[8]
Calculations: test[0]=0x00
 test[1] =0x00
 test[2]=0x00
 test[3]=0x00
 test[4]=0x00
 test[5]=0x00
 test[6]=0x00
 test[7]=0x00

Open Properties box:

Display name: Scan Keypad
Component: KeyPad(0)

Open Variables box:
Create new variable: byte, keypad
Macro: GetAscii
Return Value keypad

i

Open Properties box:
Display name: Convert and send data
Macro: Convert_To_Keypress_String

Open Properties box:
Display name: Update LED Values
Macro: Update_LEDs

Open Properties box:
Display name: USB Failed
Component: LCDDisplay(0)
Macro: PrintString
Parameter "USB Startup
Failed”

Open Properties box:
Display name: Loop
Loop while: 1
Test the loop at the: Start

Open Properties box:
Display name: USB Started
Component: LCDDisplay(0)
Macro: PrintString
Parameter "USB Startup OK”

Macro: Init_Network

USB Solution – Instructor Guide

EB540-80-04 USB Solution 24 Copyright © 2014 Matrix TSL

Convert_To_Keypress_String macro

1. Switch case icons -

Open Properties box:
Display name: Keypress „1‟
Calculation: test[2] = 0x59

Open Properties box:
Display name: Keypress „0‟
Calculation: test[2] = 0x62

Open Properties box:
Display name: Keypress „3‟
Calculation: test[2] = 0x5B

Open Properties box:
Display name: Keypress „2‟
Calculation: test[2] = 0x5A

Open Properties box:
Display name: Keypress „4‟
Calculation: test[2] =0x5C

Open Properties box:
Display name: Keypress „5‟
Calculation: test[2] = 0x5D

Open Properties box:
Display name: Keypress „8‟
Calculation: test[2] = 0x60

Open Properties box:
Display name: Keypress „6‟
Calculation: test[2] = 0x5E

Open Properties box:
Display name: Keypress „9‟
Calculation: test[2] = 0x61

Open Properties box:
Display name: Keypress „‟
Calculation: test[2] =0x55

Open Properties box:
Display name: Keypress „#‟
Calculation: test[2] = 0x32

Open Properties box:
Display name: Keypress „7‟
Calculation: test[2] = 0x5F

USB Solution – Instructor Guide

EB540-80-04 USB Solution 25 Copyright © 2014 Matrix TSL

2. Other icons -

Open Properties box:
Display name: Display Data on LCD
Macro: Display_Data

Open Properties box:

Display name: Transmit data to USB
Component: USBHID(0)
Macro: SendDataDirect
Parameter: test

Open Properties box:
 Display name: Wait for key release

Loop while: keypad<255
Test the loop at the: Start

Open Properties box:

Display name: Update key press
Component: KeyPad(0)
Macro: GetAscii
Return Value: keypad

Open Properties box:
 Display name: Set data to nothing

pressed
 Calculations: test[0]= 0x01
 test[1] = 0x00
 test[2] = 0x00
 test[3] = 0x00
 test[4] = 0x00
 test[5] = 0x00
 test[6] = 0x00
 test[7] = 0x00
test[7] = 0x00

Open Properties box:
Display name: Send data
Component: USBHID(0)
Macro: SendDataDirect
Parameter: test

USB Solution – Instructor Guide

EB540-80-04 USB Solution 26 Copyright © 2014 Matrix TSL

Display_Data macro

Open Properties box:
Display name: Print Spacer
Component: LCDDisplay(0)
Macro: PrintString
Parameter: " ”

Macro: Init_Network

Open Properties box:
Display name: Print Data Byte 0
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[0]

Open Properties box:
Display name: Print Keypad ASCII
Component: LCDDisplay(0)
Macro: PrintAscii
Parameter: keypad

Macro: Init_Network

Open Properties box:
Display name: Clear Display
Component: LCDDisplay(0)
Macro: Clear

Open Properties box:
Display name: Print Data Byte 1
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[1]

Open Properties box:

Display name: Print Data Byte 2
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[2]

Open Properties box:

Display name: Print Data Byte 3
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[3]

Open Properties box:
Display name: Move cursor
Component: LCDDisplay(0)
Macro: Cursor
Parameter: 3, 1

Open Properties box:
Display name: Print Data Byte 5
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[5]

Open Properties box:
Display name: Print Data Byte 4
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[4]

Open Properties box:
Display name: Print Data Byte 6
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[6]

Open Properties box:
Display name: Print Spacer
Component: LCDDisplay(0)
Macro: PrintString
Parameter: " ”

Macro: Init_Network

Open Properties box:
Display name: Print Data Byte 7
Component: LCDDisplay(0)
Macro: PrintNumber
Parameter: test[7]

Open Properties box:
Display name: Print Spacer
Component: LCDDisplay(0)
Macro: PrintString
Parameter: " ”

Macro: Init_Network

Open Properties box:
Display name: Print Spacer
Component: LCDDisplay(0)
Macro: PrintString
Parameter: " ”

Macro: Init_Network

Open Properties box:
Display name: Print Spacer
Component: LCDDisplay(0)
Macro: PrintString
Parameter: " ”

Macro: Init_Network

Open Properties box:
Display name: Print Spacer
Component: LCDDisplay(0)
Macro: PrintString
Parameter: " ”

Macro: Init_Network

Open Properties box:
Display name: Print Spacer
Component: LCDDisplay(0)
Macro: PrintString
Parameter: " ”

Macro: Init_Network

USB Solution – Instructor Guide

EB540-80-04 USB Solution 27 Copyright © 2014 Matrix TSL

Update_LEDs macro:

Open Properties box:
Display name: Check for incoming data
Component: USBHID(0)
Macro: CheckRx

Open Variables box:
Create new variable: byte, retval
Return Value retval

 Open Properties box:
Display name: If data available
If: retval

 Open Properties box:
Display name: Collect the data
Component: USBHID(0)
Macro: ReceiveByte
Parameter: 0
Return Value retval

 Open Properties box:
Display name: Output to Port
Variable: retval
Port: PORT E
Entire port – No masking

USB Solution – Instructor Guide

EB540-80-04 USB Solution 28 Copyright © 2014 Matrix TSL

Exercise 3:

Keypad Properties

LCD Properties

USB Serial Properties

LED Properties

ADC Properties

USB Solution – Instructor Guide

EB540-80-04 USB Solution 29 Copyright © 2014 Matrix TSL

Main – part 1:

Open Properties box:
Display name: Start LCD
Component: LCDDisplay(0)
Macro: Start

Open Properties box:

Display name: Initialise USB
Component: USBHID(0)
Macro: Initialise

Open Variables box:
Create new variable: byte, retval
Return Value retval

Open Properties box:

Display name: USB Failed
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "USB Startup Failed”

Open Properties box:
Delay value: 2 s

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

 Open Properties box:
 Display name: Set vars to zero
Open Variables box:
 Create new variable: byte, sample
 Calculation: sample = 0

Open Properties box:
Display name: Clear Data Array
Macro: Clear_Data_Array

Open Properties box:
Display name: Loop forever
Loop while: 1
Test the loop at the: Start

 Open Properties box:
Display name: Keypad Start Control
Macro: Start_Control

Open Properties box:
Display name: Do we need to sample
If: sample = 1

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

Open Properties box:
Display name: Print Logging Started
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "Logging Started”

Open Properties box:
Display name: Print Logging Paused
Component: LCDDisplay(0)
Macro: PrintString
Parameter "Logging Paused”

Open Properties box:
 Display name: Calculation
Open Variables box:
 Create new variable: byte, IDX
 Calculation: IDX = 0

Open Properties box:
Display name: Sample ADC0
Component: ADC(0)
Macro: GetByte
Return Value: retval

 Open Properties box:
Display name: Turn result into a string

Open Variables box:
 Create new variable: string, RS[4]

String functions: RS = tostring$(retval)

Open Properties box:
Display name: Print USB Starting
Component: LCDDisplay(0)
Macro: PrintString

Parameter: “USB Starting”

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

 Open Properties box:
Display name: Did we get an Error
If: retval

Open Properties box:
Display name: USB Started
Component: LCDDisplay(0)
Macro: PrintString
Parameter "USB Startup OK”

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

Open Properties box:
Display name: Get Num Lock Status
Macro: Get_Lock_Status

USB Solution – Instructor Guide

EB540-80-04 USB Solution 30 Copyright © 2014 Matrix TSL

Main – part 2:

Open Properties box:
Display name: Loop
Loop while: RS[IDX] > 0
Test the loop at the: Start

Open Properties box:
 Display name: Calculation

Open Variables box:
 Create new variable: byte, TX_VAL
 Calculation: TX_VAL = RS[IDX]

Open Properties box:
 Display name: Convert ASCII to HID key ID
Open Variables box:
 Create new variable: string, usbhid[8]
 Calculation: usbhid[2] = TX_VAL + 40

Open Properties box:
Display name: Was it a zero
If: usbhid[2] = 88

Open Properties box:
 Display name: Correct ASCII to HID key

conversion
 Calculation: usbhid[2] = 98

Open Properties box:
Display name: Transmit data to
USB
Component: USBHID(0)
Macro: SendDataDirect
Parameter: usbhid

Open Properties box:
Delay value: 5 ms

Open Properties box:
Display name: Clear Data Array
Macro: Clear_Data_Array

Open Properties box:
Display name: Send data
Component: USBHID(0)
Macro: SendDataDirect
Parameter: usbhid

Open Properties box:
 Display name: Send an ENTER
 Calculation: usbhid[2] = 0x28

Open Properties box:
Display name: Transmit data to USB
Component: USBHID(0)
Macro: SendDataDirect
Parameter: usbhid

Open Properties box:
Delay value: 5 ms

Open Properties box:

Display name: Clear Data Array
Macro: Clear_Data_Array

Open Properties box:
Display name: Send data
Component: USBHID(0)
Macro: SendDataDirect
Parameter: usbhid

Open Properties box:
Delay value: 100 ms

USB Solution – Instructor Guide

EB540-80-04 USB Solution 31 Copyright © 2014 Matrix TSL

Start_Control macro:

Open Properties box:
Display name: Check switch
Component: KeyPad(0)
Macro: GetAscii
Return Value: retval

 Open Properties box:
Display name: Start switch pressed
If: retval = „1‟

 Open Properties box:
 Display name: Engage NumLock
 Calculation: usbhid[2] = 0x53

Open Properties box:

Display name: Transmit data to USB
Component: USBHID(0)
Macro: SendDataDirect
Parameter: usbhid

 Open Properties box:
Display name: Loop
Loop while: retval = „1‟
Test the loop at the: Start

Open Properties box:
Display name: Check switch
Component: KeyPad(0)
Macro: GetAscii
Return Value: retval

Open Properties box:
Display name: Clear Data Array
Macro: Clear_Data_Array

Open Properties box:
Display name: Send data
Component: USBHID(0)
Macro: SendDataDirect
Parameter: usbhid

USB Solution – Instructor Guide

EB540-80-04 USB Solution 32 Copyright © 2014 Matrix TSL

Get_Lock_Status macro:

Clear_Data_Array macro:

Open Properties box:
Display name: Check for incoming data
Component: USBHID(0)
Macro: CheckRx

Open Variables box:
Create new variable: byte, retval
Return Value retval

 Open Properties box:
Display name: Data available
If: retval

Open Properties box:
Display name: Output to Port
Variable: retval
Port: PORT E
Entire port – No masking

Open Properties box:
 Display name: Remember this setting
 Calculation: sample = retval AND 1

Open Properties box:
Display name: Get the data
Component: USBHID(0)
Macro: ReceiveByte
Parameter: 0
Return Value retval

Open Properties box:
 Display name: Clear data

Calculations: usbhid[0]= 0x00
 usbhid[1] = 0x00
 usbhid[2] = 0x00
 usbhid[3] = 0x00
 usbhid[4] = 0x00
 usbhid[5] = 0x00
 usbhid[6] = 0x00
 usbhid[7] = 0x00

USB Solution – Instructor Guide

EB540-80-04 USB Solution 33 Copyright © 2014 Matrix TSL

Exercise 4:

Keypad Properties

LCD Properties

USB HID Properties

ADC Properties

USB Solution – Instructor Guide

EB540-80-04 USB Solution 34 Copyright © 2014 Matrix TSL

Main – part 1:

Main – part 2:

Open Properties box:
Display name: Loop
forever
Loop while: 1
Test the loop at the: Start

Open Properties box:
Display name: Start LCD
Component: LCDDisplay(0)
Macro: Start

Open Properties box:
Display name: Print USB Starting
Component: LCDDisplay(0)
Macro: PrintString
Parameter: “USB Starting”

Open Properties box:
Display name: Initialise USB
Component: USBSerial(0)
Macro: Initialise

Open Variables box:
Create new variable: byte, retval
Return Value retval

 Open Properties box:
Display name: Did we get an Error
If: retval

Open Properties box:
Display name: USB Failed
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "USB Startup Failed”

Open Properties box:
Display name: USB Started
Component: LCDDisplay(0)
Macro: PrintString
Parameter "USB Startup OK”

Open Properties box:
 Display name: Initialise Column and Row

Open Variables box:
 Create new variable: byte, column
 byte, row
 Calculations: column = 0
 row = 0

Open Properties box:
Delay value: 2 s

Open Properties box:
Display name: Check USB for incoming data
Component: USBSerial(0)
Macro: ReadByte
Parameter: 0
Return Value retval

Open Properties box:
Display name: If data available
If: retval< 255

Open Properties box:
Display name: Check for backspace
If: retval= 8

Open Properties box:
 Display name: Increment column count
 Calculations: column = column + 1

Open Properties box:
 Display name: Move back a column
 Calculations: column = column - 1

Open Properties box:
Display name: Are we at the first
character on a row
If: column > 0

Open Properties box:
Display name: If we are starting
again on the top line
If: (row = 0) && (column = 0)

Open Properties box:
Display name: Are we on Row 1
If: row

Open Properties box:
 Display name: Reset back to Row 0
 Calculations: row = 0

Open Properties box:
 Display name: Reset to end of column
 Calculations: column = 15

Open Properties box:
Display name: Output data
byte to LCD
Component:
LCDDisplay(0)
Macro: PrintAscii
Parameter: retval

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

Open Properties box:
Display name: Clear LCD

Component:
LCDDisplay(0)
Macro: Clear

USB Solution – Instructor Guide

EB540-80-04 USB Solution 35 Copyright © 2014 Matrix TSL

Main – part 3:

Open Properties box:
Display name: If a key is pressed
If: retval < 255

Open Properties box:
Display name: If we are at the end
of the row
If: column = 16

Open Properties box:
 Display name: Reset column count
 Calculations: column = 0

Open Properties box:
Display name: Move LCD cursor to correct position
Component: LCDDisplay(0)
Macro: Cursor
Parameter: column, row

Open Properties box:
Display name: Output
space to LCD

Component:
LCDDisplay(0)
Macro: PrintAscii
Parameter: „ „

Open Properties box:
Display name: Move LCD cursor back to correct
position
Component: LCDDisplay(0)
Macro: Cursor
Parameter: column, row

Open Properties box:
Display name: Move to
next row
If: row

 Open Properties box:
 Display name: Line 0
 Calculations: row = 0

Open Properties box:
 Display name: Line 1
 Calculations: row = 1

Open Properties box:
Display name: Check Keypad for Keypress
Component: KeyPad(0)
Macro: GetAscii
Return Value: retval

Open Properties box:
Display name: Move LCD cursor to correct position
Component: LCDDisplay(0)
Macro: Cursor
Parameter: column, row

Open Properties box:
Display name: Send the
data
Component: USBSerial(0)
Macro: SendByte
Parameter: retval

Open Properties box:
Display name: While key is held down
If: retval < 255

Open Properties box:
Display name: Check Keypad for Keypress
Component: KeyPad(0)
Macro: GetAscii
Return Value: retval

USB Solution – Instructor Guide

EB540-80-04 USB Solution 36 Copyright © 2014 Matrix TSL

Exercise 5:

Keypad Properties

LCD Properties

USB Serial Properties

ADC Properties

RS232 Properties

USB Solution – Instructor Guide

EB540-80-04 USB Solution 37 Copyright © 2014 Matrix TSL

Main – part 1:

Open Properties box:
Component: RS232(0)
Macro: Initialise

Open Properties box:
Display name: Print USB Starting
Component: LCDDisplay(0)
Macro: PrintString
Parameter: “USB Starting”

Open Properties box:

Display name: Initialise USB
Component: USBSerial(0)
Macro: Initialise

Open Variables box:
Create new variable: byte, retval
Return Value retval

Open Properties box:

Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

Open Properties box:
Display name: Did we get an Error
If: retval

Open Properties box:
Display name: USB Failed
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "USB Startup Failed”

Open Properties box:
Display name: USB Started
Component: LCDDisplay(0)
Macro: PrintString
Parameter "USB Startup OK”

Open Properties box:
Delay value: 2 s

Open Properties box:
Display name: Loop forever
Loop while: 1
Test the loop at the: Start

 Open Properties box:
Display name: Check data on
USB Component: USBSerial(0)
Macro: ReadByte
Parameter: 0
Return Value retval

Open Properties box:
Display name: If data available
If: retval < 255

 Open Properties box:
Display name: Move to first line of LCD
Component: LCDDisplay(0)
Macro: Cursor
Parameter: 2, 0

Open Properties box:
Display name: USB -> RS232
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "USB -> RS232"

Open Properties box:
Display name: Forward data to RS232
Component: RS232(0)
Macro: SendChar
Parameter: retval

Open Properties box:
Display name: Clear first line of LCD
Component: LCDDisplay(0)
Macro: ClearLine
Parameter: 0

Open Properties box:
Display name: Start LCD
Component: LCDDisplay(0)
Macro: Start

USB Solution – Instructor Guide

EB540-80-04 USB Solution 38 Copyright © 2014 Matrix TSL

Main – part 2:

Open Properties box:
Display name: Check for data on RS232
Component: RS232(0)
Macro: ReceiveRS232Char
Parameter: 0
Return Value: retval

Open Properties box:

Display name: If data available
If: retval < 255

Open Properties box:
Display name: Clear second line of LCD
Component: LCDDisplay(0)
Macro: ClearLine
Parameter: 1

Open Properties box:
Display name: Move to second line of LCD
Component: LCDDisplay(0)
Macro: Cursor
Parameter: 2, 1

Open Properties box:
Display name: Print USB -> RS232 Message
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "USB -> RS232"

Open Properties box:

Display name: Forward data to USB
Component: USBSerial(0)
Macro: SendByte
Parameter: retval

USB Solution – Instructor Guide

EB540-80-04 USB Solution 39 Copyright © 2014 Matrix TSL

Exercise 6:

Keypad Properties

LCD Properties

USB Slave Properties

ADC0 Properties

ADC1 Properties

USB Solution – Instructor Guide

EB540-80-04 USB Solution 40 Copyright © 2014 Matrix TSL

Main

Open Properties box:
Display name: Start LCD
Component: LCDDisplay(0)
Macro: Start

Open Properties box:
Display name: Print USB Starting
Component: LCDDisplay(0)
Macro: PrintString
Parameter: “USB Starting”

Open Properties box:
Display name: Initialise USB
Component: USBSlave(0)
Macro: Initialise

Open Variables box:
Create new variable: byte, retval
Return Value retval

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

Open Properties box:
Display name: Did we get an Error
If: retval

Open Properties box:
Display name: USB Failed
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "USB Startup Failed”

Open Properties box:
Display name: USB Started
Component: LCDDisplay(0)
Macro: PrintString
Parameter "USB Startup OK”

Open Properties box:
Delay value: 2 s

Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

Open Properties box:
Display name: Start The Slave Service Running
Component: USBSlave(0)
Macro: RunSlaveService

USB Solution – Instructor Guide

EB540-80-04 USB Solution 41 Copyright © 2014 Matrix TSL

Slave_Service macro

Open Properties box:
Display name: Output a value to PortE
Variable: Slave_Service.Data
Port: PORT E
Entire port – No masking

Open Properties box:
Display name: Output a character to LCD
Component: LCDDisplay(0)
Macro: PrintAscii
Parameter: Slave_Service.Data

Open Properties box:
Display name: Sample
Keypad
Component: KeyPad(0)
Macro: GetAscii
Return Value: retval

Open Properties box:
Display name: Decision
If: Slave_Service.Data

Open Properties box:
Display name: Sample ADC0
Component: ADC(0)
Macro: GetByte
Return Value: retval

Open Properties box:

Display name: Send ADC Sample
Component: USBSlave(0)
Macro: SendByte
Parameter: retval

Open Properties box:
Display name: Sample ADC1
Component: ADC(1)
Macro: GetByte
Return Value: retval

Open Properties box:
Display name: Send Keypad Data
Component: USBSlave(0)
Macro: SendByte
Parameter: retval

USB Solution – Instructor Guide

EB540-80-04 USB Solution 42 Copyright © 2014 Matrix TSL

Exercise 7:

Main

Open Properties box:
 Display name: Calculation
 Open Variables box:

Create new variable: byte, count
 byte, timeout

Calculations: count = 0
 timeout = 0

Open Properties box:
Display name: Initialise USB
Component: USBSlave(0)
Macro: Initialise

Open Variables box:
Create new variable: byte, retval
Return Value retval

Open Properties box:
Display name: Start The Slave Service Running
Component: USBSlave(0)
Macro: RunSlaveService

ADC Properties

USB Slave Properties

USB Solution – Instructor Guide

EB540-80-04 USB Solution 43 Copyright © 2014 Matrix TSL

Service macro

tmr_int macro

 Open Properties box:
 Display name: Reset Counters

Calculations: count = 0
 timeout = 0

Open Properties box:
 Open Variables box:

Create new variable: byte, service_macro.cmd

Open Properties box:

Display name: Acknowledge
Component: USBSlave(0)
Macro: SendByte
Parameter: 0

Open Properties box:
Display name: Send Data Array
Open Variables box:
Create new variable: string, buffer[64]
Component: USBSlave(0)
Macro: SendString
Parameter: buffer, count

Open Properties box:
Display name: If there is room in the array
If: timeout = 0

 Open Properties box:
Display name: Sample ADC AN0
Component: ADC(0)
Macro: GetByte
Return Value: buffer[count]

 Open Properties box:
 Display name: Increment the array pointer

Calculations: count = count + 1

Open Properties box:
Display name: If array
pointer at end of array
If: count = 64

 Open Properties box:
 Display name: End sampling

Calculations: timeout = 1
Open Properties box:
 Display name: Calculation

Calculations: count = count - 1
 buffer[count] = 255
 count = count + 1

USB Solution – Instructor Guide

EB540-80-04 USB Solution 44 Copyright © 2014 Matrix TSL

Exercise 8:

LCD Properties

USB Slave Properties

ADC0 Properties

ADC1 Properties

USB Solution – Instructor Guide

EB540-80-04 USB Solution 45 Copyright © 2014 Matrix TSL

Main

Open Properties box:
 Display name: Initialise variables

 Open Variables box:
Create new variable: byte, int_count
 byte, buffer_size
 byte, trigger
 byte, triggered

Calculations: int_count = 0
 buffer_size = 64
 trigger = 255
 triggered = 0

Open Properties box:
Display name: Start LCD Display
Component: LCDDisplay(0)
Macro: Start

 Open Properties box:
Display name: USB Status Message
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "USB Connecting"

Open Properties box:
Display name: Initialise USB
Component: USBSlave(0)
Macro: Initialise

Open Variables box:
Create new variable: byte, retval
Return Value retval

 Open Properties box:
Display name: Clear LCD
Component: LCDDisplay(0)
Macro: Clear

Open Properties box:
Display name: USB Startup Error
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "USB Startup Failed”

Open Properties box:
Display name: Decision
If: retval

Open Properties box:
Display name: LCD USB Scope Title
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "USB Scope"

Open Properties box:
Display name: Start The USB slave service
Component: USBSlave(0)
Macro: RunSlaveService

USB Solution – Instructor Guide

EB540-80-04 USB Solution 46 Copyright © 2014 Matrix TSL

Slave_Handle macro

Create the additional variables, shown in the Variable Manager.

The following are used within the macro:

Switch-case properties Enable TMR0 properties

Open Properties box:
Display name: Scope Running LED On
Value: 1
Port: PORT E
Single bit: 0

Open Properties box:
Display name: All LEDs off
Value: 0
Port: PORT E
Entire port – No masking

Open Properties box:
Display name: Clear LCD Status Line
Component: LCDDisplay(0)
Macro: ClearLine
Parameter: 1

 Open Properties box:
Display name: Print Scope Stopped
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "Scope Stopped"

Open Properties box:
Display name: Move to start of second
line
Component: LCDDisplay(0)
Macro: Cursor
Parameter: 0, 1

Open Properties box:
Display name: Print Channel Updated
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "Channel Updated"

 Open Properties box:
 Display name: Assign new trigger threshold

Calculations: trigger = Slave_Handle.data

Open Properties box:
Display name: Print Scope Running
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "Scope Running"

Open Properties box:
Display name: Send Data Buffer
Macro: SendString
Parameter: output_buffer, int_count

 Open Properties box:
Display name: Print Trigger Updated
Component: LCDDisplay(0)
Macro: PrintString
Parameter: "Trigger Updated"

Open Properties box:
 Display name: Reset counters and trigger

Calculations: output_count = 0
 triggered = 0

Open Properties box:
 Display name: Assign new trigger channel

Calculations: channel = Slave_Handle.data

Open Properties box:
Display name: We have sent a full display
If: output_count > 1100

Open Properties box:
 Display name: Initialise Buffer

Position
Calculations: int_count = 0

Open Properties box:
 Display name: Count up the

number of bytes sent
 Calculations: output_count =

output_count + int_count Open Properties box:
 Display name: Reset buffer

index
Calculations: int_count = 0

USB Solution – Instructor Guide

EB540-80-04 USB Solution 47 Copyright © 2014 Matrix TSL

Int_Handle macro

Open Properties box:
Display name: Is there room
in the buffer
If: int_count < buffer_size

Open Properties box:
Display name: Trigger Voltage Detected
If: triggered

Open Properties box:

Display name: Turn Off Triggered LED
Value: 0
Port: PORT E
Single bit: 1

Open Properties box:
Display name: Turn On Triggered
LED
Value: 1
Port: PORT E
Single bit: 1

Open Properties box:
Display name: Choose
Trigger channel
If: channel = 0

Open Properties box:
Display name: Sample
Channel 1
Component: ADC(1)
Macro: GetByte
Return Value: sample

Open Properties box:
Display name: Sample
Channel 0
Component: ADC(0)
Macro: GetByte
Return Value: sample

Open Properties box:
Display name: If there is room
in the buffer
If: (int_count MOD 2) = 0

 Open Properties box:
Display name: Sample Channel 0
Component: ADC(0)
Macro: GetByte
Return Value: output_buffer[int_count]

Open Properties box:
Display name: Sample Channel 1
Component: ADC(1)
Macro: GetByte
Return Value: output_buffer[int_count]

Open Properties box:
 Display name: Increment Buffer Index

Calculations: int_count = int_count +
1

Open Properties box:

Display name: If sample is
above trigger threshold
If: sample > trigger

Open Properties box:
 Display name: Trigger
 Voltage Detected

Calculations: triggered = 1

USB Solution – Student Guide

EB540-80-04 USB Solution 1 Copyright © 2014 Matrix TSL

EB540

USB
Solution

Student Guide

USB Solution – Student Guide

EB540-80-04 USB Solution 2 Copyright © 2014 Matrix TSL

Contents

About this course 5
1 USB Overview 6

1.1 Preamble ... 6
1.2 Key Advantages of USB .. 6

2 Introduction to USB 7
2.1 Master / Slave Operation ... 7
2.2 USB Power .. 7
2.3 Connectors .. 7
2.4 Functions ... 8
2.5 Endpoints .. 8
2.6 Pipes ... 9
2.7 Classes .. 9
2.8 Device Drivers ... 9
2.9 Addressing ...10
2.10 Enumeration ...10
2.11 Interface Speeds ..10
2.12 Noise Immunity ...11

3 Data transfer 12
3.1 Transfer Types ...12
3.2 Transfers and Transactions (for USB 2 devices) ...13
3.3 Transactions ...14
3.4 USB Packets ..15

4 Setup 16
4.1 The Setup Stage ...16

5 Learning about USB Device Capabilities 18
5.2 USB Device Descriptors: ..19
5.3 USB Configuration Descriptors ...19
5.4 USB Interface Descriptors ..20
4.5 USB Endpoint Descriptors ..20
4.6 USB String Descriptors ...20

6 The Matrix USB Training Solution 21
6.1 Solution Overview ...21
6.2 Default connections and settings: ...23

7 Flowcode and USB 24
7.1 USB Serial Component ...24
7.2 USB HID Component ..24
7.3 USB Slave Component ...24
7.4 Enumeration Wait Setting ...25

8 USB Serial device 26
8.1 Installing the Device Driver ...26
8.2 USB Serial Device and HyperTerminal ...27

9 USB Slave Device 29
9.1 Installing the Device Driver ...29
9.2 USB Slave and Visual Basic ...30

10 USB HID Custom Descriptor Generation 31
11 PIC18F4455 Configuration 32
12 The USB Assignments 33
13 Exercise 1 – Human Interface Device: Mouse 34

13.1 Introduction ...34
13.2 Objective ..34
13.3 Target microcontroller ...34

USB Solution – Student Guide

EB540-80-04 USB Solution 3 Copyright © 2014 Matrix TSL

13.4 Flowcode USB HID component ..34
13.5 USB HID component settings ...34
13.6 The Flowcode program in detail ..35
13.7 A Generic USB Mouse ..35
13.8 What to do ..35
13.9 Further Work ...36

14 Exercise 2 – Human Interface Device: Keyboard 37
14.1 Introduction ...37
14.2 Objective ..37
14.3 Flowcode USB HID component ..37
14.4 USB HID component settings ...37
14.5 The Flowcode program in detail ..37
14.6 A Generic USB Keyboard ...38
14.7 What to do ..39
14.8 Further Work ...39

15 Exercise 3 – Human Interface Device: Data-Logger 40
15.1 Introduction ...40
15.2 Objective ..40
15.3 USB HID component settings ...40
15.4 The Flowcode program in detail ..40
15.5 Storing the data ..40
15.6 What to do ..41
15.7 Further Work ...41

16 Exercise 4 – Communications Device: USB Terminal 42
16.1 Introduction ...42
16.2 Objective ..42
16.3 Flowcode USB Serial component ...42
16.4 USB Serial component settings ..42
16.5 The Flowcode program in detail ..43
16.6 A Generic USB Serial Port ..43
16.7 What to do: ...43
16.8 Further Work ...43

17 Exercise 5 – Communications Device: USB to RS232 protocol bridge 44
17.1 Introduction ...44
17.2 Objective ..44
17.3 USB Serial component settings ..44
17.4 The Flowcode program in detail ..44
17.5 USB to Serial Bridge ...44
17.6 What to do ..45
17.7 Further Work ...45

18 Exercise 6 – Slave Device: Basic Slave Functionality 46
18.1 Introduction ...46
18.2 Objective ..46
18.3 Flowcode USB Slave component ..46
18.4 USB Slave component settings...47
18.5 The Flowcode program in detail ..47
18.6 A USB Slave DLL Transaction ..47
18.7 Driver Support Files ..48
18.8 What to do ..48
18.9 Further Work ...48

19 Exercise 7 – Slave Device: Storage Scope 49
19.1 Introduction ...49
19.2 Objective ..49
19.3 The Flowcode program in detail ..49

USB Solution – Student Guide

EB540-80-04 USB Solution 4 Copyright © 2014 Matrix TSL

19.5 What to do ..49
19.6 Further Work ...50

20 Exercise 8 – Slave Device: Triggered Scope 51
20.1 Introduction ...51
20.2 Objective ..51
20.3 The Flowcode program in detail ..51
20.4 What to do ..51
20.5 Further work ...51

21 The USB C Code Library 52

USB Solution – Student Guide

EB540-80-04 USB Solution 5 Copyright © 2014 Matrix TSL

About this course

Aims:
The aim is to introduce the concepts involved in USB devices.

 On completing this course you will have learned about:

 the relationship between USB masters, hubs and endpoints;

 the electrical principles behind USB architecture;

 the components that make up a USB device;

 the options available for USB devices;

 the addressing schemes;

 USB signals and routing;

 low power and sleep modes;

 USB device drivers;

 USB devices that do not require drivers.

What you will need:

To complete this course you will need the following equipment:

 Flowcode software (version 6 or higher)

 E-blocks including:

 1 Multiprogrammer (PIC - EB006)

 with PIC18F4455 device and 4MHz crystal;

 1 Sensor E-Block (EB003);

 1 LED E-Block (EB004);

 1 LCD E-Block (EB005);

 1 Keypad E-Block (EB014);

 1 USB E-Block (EB055);

 1 RS232 E-Block (EB015);

 2 x IDC Cable (EB634)

 Dual IDC Cable (EB635)

Using this course:

This course presents you with a number of tasks listed in the exercises that follow the text.
All the information needed to complete these is contained in the notes.

Before starting the exercises, you should familiarise yourself with the background material.

Time:
To undertake all of the exercises will take around twelve hours.

Important note: Information presented here is correct at the time of publication. Please
check the Matrix web site www.matrixltd.com for the latest E-Blocks documentation.

http://www.matrixltd.com/

USB Solution – Student Guide

EB540-80-04 USB Solution 6 Copyright © 2014 Matrix TSL

1 USB Overview

1.1 Preamble

As electronic and computer equipment becomes more and more pervasive, there is an ever-
increasing demand to modernise and digitise. The universal serial bus (USB) protocol offers
one way to achieve this. Most computer systems, phones, stereos and even televisions now
include USB connections.

This review of USB describes the components of a typical USB system, and looks at how
they communicate. It includes a glossary of the terms used in USB systems, and in the
practical exercises that follow. It does not pretend to be an exhaustive primer on the subject,
but aims rather to prompt the memory of the student carrying out the exercises.

1.2 Key Advantages of USB

One advantage of USB is that it can supply attached devices with electrical power so that
one connection provides both a data link and power. Another advantage is that USB hubs
can be used to add additional ports to the system. Other means of connecting devices, such
as Firewire, MIDI or COM port protocols, are becoming either outdated, or reserved for more
specialist equipment, such as digital video cameras and high throughput audio equipment.

A drawback of USB is its relatively complex structure. Most engineers can look at a serial
bus and readily understand the connections responsible for transmitting data back and forth
between devices. All you have to do is to toggle the signal voltage at the specified rate to
achieve a communications link. With USB, communication is more complicated. For a start,
there is a hierarchy to USB. Instead of linking equal peers, the system uses master / slave
architecture, with the host controlling communication with the peripheral device. Connections
use time splicing, (time-division multiplexing,) so that many USB end devices can talk to a
single host device. This allows devices such as USB hubs to transform a single connection
into multiple distinct connections, so that a number of peripheral devices can communicate
with the same USB controller along the same cable.

Here are some reasons that USB has become so popular in modern day computer systems:

 capable of supplying power to peripheral devices;

 very high speed communications;

 scalable with the use of USB hub devices;

 noise immunity;

 built-in error checking and data correction;

 plug-and-play;

 versatile and highly configurable;

 low cost;

 addressable;

 physically small connectors;

 easy to embed into devices.

USB Solution – Student Guide

EB540-80-04 USB Solution 7 Copyright © 2014 Matrix TSL

2 Introduction to USB

Universal Serial Bus (USB) is the name given to a specific type of high-level bus used in
modern high speed digital systems. Learning how to use the USB standard can seem like a
complex and daunting task, especially as the current USB 2.0 specification is over 650 pages
long, (not counting a long list of associated USB standards.) Thankfully, much of this is
outside the scope of this course, which focuses on creating USB peripherals.

Comparing USB with similar bus based technologies:

 USB 2.0 Firewire Serial

Speed 12Mb/s – 480Mb/s 12.2Mb/s – 400Mb/s 1Mb/s

Architecture Master / Slave Peer-to-peer Peer-to-peer

Performance Good Great Excellent

Arbitration Host controller Device controlled Direct connection

Devices per channel 127 16 1

2.1 Master / Slave Operation

USB is a Master / Slave system where the single Master (the host) is capable of controlling
up to 127 individual Slave systems, (the peripheral devices.) Each USB device must connect
directly to the host or go through a hub device, which acts to split the connection. Adding a
hub onto the USB bus might incur a penalty in the form of additional latency. The hub is a
USB device in itself, which communicates with the host to ensure that no collisions or errors
happen between USB devices which are trying to communicate simultaneously.

2.2 USB Power

A USB cable is made up of four shielded wires. Two carry power for peripheral devices, as
+5V (nominally) and ground. The remaining two wires, named D+ and D-, carry high speed
data in serial format. Current capability is limited to 500mA, though a maximum of 100mA is
available during configuration (enumeration), or if the device is connected to a bus-powered
hub.

The USB host can control how much current is provided for any single USB device. This
helps to prevent hardware damage caused by short circuits or power hungry peripheral
devices. The maximum current demand is defined during the enumeration process and is a
number between 0 and 255, representing 2mA increments. For high current devices, a USB
hub with its own power source can be situated between the device and the host.

2.3 Connectors

All USB devices have an „upstream‟ connection to the host and all USB hosts have a
„downstream‟ connection to the device. The standard connectors are not mechanically
interchangeable and therefore eliminate connection errors. The host connector is normally
referred to as a type „A‟ connector and is commonly found on all modern computer systems.
The device connector comes in several formats, having different sizes and shapes. These
upstream connectors are normally referred to as B for the large sized connectors, mini B for
the small sized connectors and micro B for the very small sized connectors. There are also
mini and micro varieties of the downstream type A connector but these are much less
common.

USB Solution – Student Guide

EB540-80-04 USB Solution 8 Copyright © 2014 Matrix TSL

Some connectors have five pins, not the four discussed earlier. These allow for a more
flexible allocation of roles, which may be needed in smaller systems. The standard USB
protocol uses a master / slave configuration. The master (usually a PC) controls the
communication. The slave (peripheral device) responds to requests from the master.
Sometimes, however, a device acts as a host (master) for part of the time and as a
peripheral device (slave) at other times. For instance, when we send photographs direct to
the internet from a digital camera via a mobile phone, which device should be the master?

The On-The-Go (OTG) supplement to the USB 2.0 specification introduces dual role devices
that negotiate, and can alternate, the role of master and slave. The micro-AB connector
allows a cable to be connected either way round. The cable orientation determines the initial
roles. The fifth pin, the ID pin, is connected to ground inside the A plug and left floating in the
B plug. The OTG device receiving the grounded ID pin takes on the host role initially, while
the device with the floating ID pin defaults to peripheral. The supplement adds protocols such
as HNP (Host Negotiation Protocol) to make possible this flexibility.

2.4 Functions

The word „function‟ has a special meaning in the USB world. A function is a device which
provides a particular ability to the host. Most devices offer only one function each. However,
some, called compound devices, provide several functions. A video camera, for example,
provides both audio data and video data. Such a device can have an embedded hub,
allowing it to communicate with the host via a single USB cable.

2.5 Endpoints

Endpoints are sources or sinks of data which occur at the end of the communications
channel at each USB function. A peripheral device sets up one-to-one links between each of
its endpoints and the application software running on the host. All bus traffic travels to or
from an endpoint.

All devices have endpoints. In practice, they are registers or buffers (blocks of memory) that
store incoming and outgoing data. Each device has at least one endpoint, called endpoint 0,
used for control and status communications with the host. It may have more endpoints. A
USB 2.0 device can have up to 16 OUT and 16 IN endpoints. In this context, OUT always
means from host to device, and IN always means from device to host.

Each is allocated an address so that the host can communicate directly with it. When the
device driver in the host sends data to an endpoint, it is stored in the endpoint OUT buffer.
Usually, this triggers an interrupt, which causes the device to read the data. It cannot reply
directly to the host, as the communications link is controlled by the host, not the device.

USB Solution – Student Guide

EB540-80-04 USB Solution 9 Copyright © 2014 Matrix TSL

Instead, it stores the reply data in the endpoint IN buffer, which the host can then request at
a later time. This communication takes place using logical entities known as pipes.

2.6 Pipes

A pipe is a logical communication link between the software running in the host and an
endpoint. More than simply a wire, each pipe has a set of parameters that define its
performance, such as bandwidth, direction of data flow, and endpoint address. These are set
up during enumeration, and depend on the device configuration.

All devices must support endpoint zero. This receives all control and status requests. Every
device has a default control pipe to endpoint zero. This is bi-directional, and so may be
considered as two pipes, one IN and one OUT, that share the same endpoint.

USB defines two types of pipes, message and stream pipes. Control transfers use bi-
directional message pipes. All other transfer types use stream pipes:
 Stream Pipes have a pre-defined direction, either IN or OUT. They can be controlled by

either the host or the peripheral device.
 Message Pipes are used only for control transfers, and are controlled only by the host.

2.7 Classes

Many USB devices have properties in common. Mice send information about mouse
movements and button clicks; printers receive and print data, and return status information.

Some standard protocols, called Classes, have been defined to simplify configuration. Using
these, hosts can use standardised device drivers rather than having to look for specific
drivers from each vendor. The following table lists some of these approved classes, and the
device descriptor to which they apply:

Class
Descriptor where class is
declared

Audio Interface

Communication Device or interface

Human interface (HID) Interface

Mass storage Interface

Printer Interface

Still image capture Interface

Test and measurement Interface

Video Interface

2.8 Device Drivers

USB supports the plug‟n‟play standard, so that software device drivers are dynamically
loaded and unloaded as devices are attached and removed from the bus. A device driver lets
the computer know what functionality a device has and how to access it. When a device is
plugged in, the host detects it, interrogates it and loads the appropriate driver. The end user
is not required to select interrupt requests (IRQs) or specify memory addresses.

The appropriate driver is identified by two 16-bit numbers provided by the device, and unique
to it. These are known as the product identifier (PID) and the vendor identifier (VID).

VID‟s are supplied by the USB Implementer‟s Forum, (USB-IF,) for a fee. The Matrix USB
solution provides several PIDs, and the educational Matrix VID for use in developing
educational, prototype or custom systems. For commercial systems it is better to purchase
your own VID so that the hardware is permanently attributed to your company.

USB Solution – Student Guide

EB540-80-04 USB Solution 10 Copyright © 2014 Matrix TSL

2.9 Addressing

The host must be able to direct data to the appropriate peripheral device. To achieve this,
each endpoint is allocated a unique address during enumeration. This address is 7 bits long,
allowing 128 different addresses. However, address 000 0000 is never allocated. Instead, it
identifies the default endpoint 0 that a device must respond to during enumeration. This
leaves 127 possible addresses for endpoints, explaining the earlier assertion that a host can
control up to 127 peripheral devices.

2.10 Enumeration

Enumeration is the name of the information exchange that takes place when a USB device is
connected to a host.
It includes:

 assigning an address to the device endpoint;

 reading device descriptors, (formatted blocks of information about the device and
elements within it);

 determining the communication speed for the device;

 determining maximum packet size for communications;

 assigning a device driver to each endpoint;

 selecting a device configuration, which specifies features such as power
requirements.

To do this, the host sends information requests in control transfers to the device endpoint 0.
As only one device is enumerated at a time, only one responds to requests sent to endpoint
0, even though several devices may be attached. Where the host is a PC, the device will be
listed in the Device Manager, when enumeration is completed.

2.11 Interface Speeds

The USB 2.0 specification allows for a number of different interface speeds:

 High Speed – 480Mbits/s

 Full Speed – 12Mbits/s

 Low Speed – 1.5Mbits/s

The USB host has pull-down resistors on both data lines, so that when no peripheral device
is connected, both sit at logic low. This is called the reset or disconnected state.

When a USB device is connected, it pulls one of the data lines high. In this way, the host, or
hub, can detect when a device is plugged in. A full-speed device pulls the D+ data line high.
A low-speed device pulls the D- data line high. By detecting the state of the data lines, the
host determines the speed of device.

High Speed devices are a bit more complicated as they first connect as a Full Speed device
and then, if the mode is supported, they disconnect the Full Speed pull-up resistor to allow
them to run at the faster speed. The USB enabled PIC microcontrollers have the pull-up
resistors that control the device speed built in so you do not have to replicate this circuitry.

USB Solution – Student Guide

EB540-80-04 USB Solution 11 Copyright © 2014 Matrix TSL

2.12 Noise Immunity

The signal wires, D+ and D-, are physically twisted around each other to limit external noise.
The data on these lines is in differential format, which means that when one of the data lines
is at logic „low‟ then the other data line will be at logic „high‟. This increases the noise
immunity.

Here is an example of a standard serial data connection (non-differential format).

When noise is present, it becomes much harder to differentiate between the logical states.

The next example uses differential signalling. Notice the secondary signal that is the exact
opposite of the original.

Now any noise affects both signals almost equally. The differential voltage between the
signals has not been affected by the noise and so the data can be received correctly at the
other end of the bus.

USB Solution – Student Guide

EB540-80-04 USB Solution 12 Copyright © 2014 Matrix TSL

3 Data transfer

3.1 Transfer Types

USB communications takes place as a series of transfers. These can take the form of any
one of four transfer types. These are: Control, Interrupt, Bulk and Isochronous transfers.
Each transfer type provides the developer with trade-offs in error detection, latency and
bandwidth.

Control transfers:
This is used by the host to configure the peripheral device. It enables the host to read
information about the device, set the devices address and select a configuration and other
settings, as described earlier. The Control transfer is key to the way USB devices auto
detect, therefore every USB device must be able to support this communication mode.

Interrupt transfers:
This is used when the host or device must be checked periodically. Examples of devices that
use this type include USB mice and keyboards. Despite the name, this type uses polling, not
interrupts, to effect the communication. These transfers are used where an interrupt would
have been used in earlier connection types.

Bulk transfers:
This is intended for large blocks of data, where the rate of data transfer is not critical, but the
validity of the data is important. Transfer rate depends on the system workload. This type
uses „unused‟ bandwidth after other types with specific bandwidth demands have been
catered for. As a result, when the bus is busy, bulk transfers are delayed. At other times, they
will proceed rapidly. Error detection, linked to retransmission where necessary, ensures that
data is transmitted and received without error. Transfers of this type are used by devices
such as printers and scanners, where large quantities of data are transferred.

Isochronous transfers:
This type is designed for time-sensitive information. It allows a device to reserve a predefined
amount of bandwidth with guaranteed latency (delivery time.) The data is checked for errors,
but when these occur, the data is dropped. There is no request for retransmission. This is
ideal for systems such as Audio or Video where the user is unlikely to notice the loss of the
odd data packet or frame, but would notice any irregularities in arrival time.

USB Solution – Student Guide

EB540-80-04 USB Solution 13 Copyright © 2014 Matrix TSL

3.2 Transfers and Transactions (for USB 2 devices)

Data transfer to a device can consist of a number of separate transactions. These can occur
in the same frame, or be spread across a number of frames.

A host sends out a new frame every millisecond. Each frame starts off with a Start of Frame
packet, and contains a number of transactions. These can be directed to the same or to a
number of devices. If directed to the same device, they can be addressed to the same
endpoint, or to different endpoints within that device. Part of the frame can be unused, if
there are no further transactions to send.

Each transaction must start with a token packet, and can then be followed by a data packet
and a handshake packet. The fields inside each of these phases of the transaction are
different, as the following diagram shows.

USB Solution – Student Guide

EB540-80-04 USB Solution 14 Copyright © 2014 Matrix TSL

3.3 Transactions

USB transactions use four different types of packet:

 Start of frame packets:
 indicate the start of a new frame.

 Token packets:
 indicate the type of transaction to follow;

 Data packets:
 contain the data payload;

 Handshake packets:
 used for acknowledging data or reporting errors;

Start of frame packets: have the addition of an 11-bit frame number.

These are sent out by the host automatically every 1ms with a maximum error of plus or
minus 500ns. The frame number increments with each frame, and when the maximum is
reached, rolls over and starts again.

A start of frame packet contains the following fields:

Synchronisation Packet Identifier Frame Number CRC End of Packet

Token packets: come in three varieties: Setup, IN, and OUT.

The Setup packet is used to begin control transfers. It identifies the receiving endpoint and
the nature of the request.
The IN packet informs the USB device that the host wishes to read information from the
device.
The OUT packet informs the device that the host wishes to send information to it.

A token packet contains the following fields:

Synchronisation Packet Identifier Address Endpoint CRC End Of Packet

Data packets: come in two varieties: Data0 and Data1.

These are used as part of the error-checking mechanism where the transfer involves a
number of transactions. After each successful transaction, the data value, contained as part
of the PID is toggled i.e.Data0 is used for the first transaction, then Data1, then Data0 and so
on . Host and receiver monitor the data value as an indication that they are synchronised.
Both varieties are capable of transferring up to 1023 bytes of data.

A data packet contains the following fields:

Synchronisation Packet Identifier Data CRC End of Packet

Handshake packets: come in three varieties: ACK, NAK and STALL.

The ACK acknowledges that the packet has been successfully received.
The NAK indicates that the USB device cannot send or receive data at the moment. This can
also be used during an interrupt transaction where there is no data to send.
The STALL informs the host that the USB device is in a state where it needs intervention
from the host.

A handshake packet contains the following fields:

Synchronisation Packet Identifier End of Packet

USB Solution – Student Guide

EB540-80-04 USB Solution 15 Copyright © 2014 Matrix TSL

3.4 USB Packets

USB packets can contain the following fields.

 Synchronisation:
 all packets transfers start with a sync field;
 sync field is eight bits long;
 synchronises the clock of the receiver with the transmitter;
 last two bits indicate that the PID field is about to start.

 PID:
 stands for Packet Identifier;
 is also eight bits in size, though the four most significant bits are the inverse of

bits 0 to 3, for use in error-checking;
 identifies the type of packet that is being sent, as the following table shows:

Value
Packet

type
PID

name
Used in Source

0001

Token

OUT all host

1001 IN all host

0101 SOF start of frame host

1101 SETUP control host

0011

Data

DATA0 all both

1011 DATA1 all both

0111 DATA2 isochronous both

1111 MDATA isochronous both

0010

Handshake

ACK all both

1010 NAK not isochronous device

1110 STALL not isochronous device

0110 NYET not isochronous device

 the two least-significant bits determine which group it falls into. This is why
SOF is officially considered to be a token PID;

 the least-significant bit is transmitted first.

 Address:
 specifies which device the packet is designated for;
 is seven bits long;
 allows up to 127 devices on a single channel;
 value 0 is used for a device which has not yet been assigned an address.

 Endpoint:
 a four bit field;
 destination endpoint for the packet.

 CRC:
 cyclic redundancy check;
 allows the data to be scanned for errors;
 token packets have a five bit CRC;
 data packets have a 16-bit CRC.

 End Of Packet:
 three bit field
 consists of two 0s and a 1 to indicate the end of a packet.

USB Solution – Student Guide

EB540-80-04 USB Solution 16 Copyright © 2014 Matrix TSL

4 Setup

In the tables that follow, a standard notation is observed. For each field, the prefix to each
name usually identifies the format of the data in the field:
 „b‟ = byte (eight bits); „w‟ = word (sixteen bits);
 „bm‟ = bitmap; „bcd‟ = binary-coded decimal
 „i' = index; „id‟ = identifier.

4.1 The Setup Stage

The Setup transaction has two purposes – to identify that a control request is taking place,
and to define the type of request and the information needed. As described earlier, it consists
of three phases – Token, Data and Handshake.

Every USB device must respond to setup packets on the default pipe connected to
mandatory endpoint zero. They are used for the detection and configuration of the device
and are responsible for assigning the device‟s address, requesting the device descriptor
information and checking the status of an endpoint.

The Token phase:
identifies the receiver and indicates that a Setup transaction is taking place. The PID
identifies the token as a Setup type. The packet includes the device and endpoint addresses.

The Data phase:
transmits the request, using the following format:

Offset Field Bytes Value Description

0 bRequestType 1 Bitmap Transfer direction, type and recipient

1 bRequest 1 Value Request

2 wValue 2 Value Unicode encoded string

4 wIndex 2 Index Index

6 wLength 2 Count Number of bytes to transfer

In the bRequestType field:
 bit 7 defines the direction of data flow – 0 = OUT (often a SET request) and 1 = IN (a

GET request.)
 bits 6 and 5 specify the type of request – 00 = standard, 01 = class, 10 = vendor, 11 =

reserved.
 bits 4, 3, 2, 1 and 0 specify the recipient for the request – 00000 = device, 00001 =

interface, 00010 = endpoint and 00011 = other element.

This format can be seen in action in the next three tables.
Standard device requests:

bmRequestType bRequest wValue wIndex wLength Data

0b10000000 GetStatus (0x00) 0 0 2 Device status

0b00000000 ClearFeature (0x01) Feature 0 0 None

0b00000000 SetFeature (0x03) Feature 0 0 None

0b00000000 SetAddress (0x05) Address 0 0 None

0b10000000 GetDescriptor (0x06) Descriptor LanguageID Length Descriptor and length

0b00000000 SetDescriptor (0x07) Descriptor LanguageID Length Descriptor and length

0b10000000 GetConfiguration (0x08) 0 0 1 Configuration

0b00000000 SetConfiguration (0x09) Configuration 0 0 None

USB Solution – Student Guide

EB540-80-04 USB Solution 17 Copyright © 2014 Matrix TSL

Standard interface requests:

bmRequestType bRequest wValue wIndex wLength Data

0b10000001 GetStatus 0 Interface 2 Interface status

0b00000001 ClearFeature Feature Interface 0 None

0b00000001 SetFeature Feature Interface 0 None

0b10000001 GetInterface 0 Interface 1 Alternate interface

0b00000001 SetInterface
Alternate
setting

Interface 0 None

Standard endpoint requests:

bmRequestType bRequest wValue wIndex wLength Data

0b10000010 GetStatus 0 Endpoint 2 Endpoint status

0b00000010 ClearFeature Feature Endpoint 0 None

0b00000010 SetFeature Feature Endpoint 0 None

0b10000010 SyncFrame 0 Endpoint 2 Frame number

The features referred to in „SetFeature‟ and „ClearFeature‟ depend on the recipient. For
devices, the two features currently specified are „device remote wakeup‟ and „test mode‟. No
features are currently specified for interfaces, while for endpoints, the only feature is
„endpoint halt‟, which allows the host to stall and clear an endpoint.

The field „wValue‟ is used by the host to send data to the device. Hence it is set to zero in
„Get...‟ requests. The data sent depends on the type of request. In „Set Feature‟ requests, the
„wValue‟ field specifies the feature. In „Set Address‟ requests, the „wValue‟ field specifies the
address, and so on.

The field „wIndex‟ is used to specify the interface or endpoint involved in the request.

The field „wLength‟ specifies the number of data bytes in the Data stage that follows.

The Handshake phase:
Here, the device transmits an acknowledgement, using a PID coded as „ACK‟, if it has
received the Token and Data phases without error.

USB Solution – Student Guide

EB540-80-04 USB Solution 18 Copyright © 2014 Matrix TSL

5 Learning about USB Device Capabilities

5.1 Descriptors

During enumeration, the host learns about device capabilities using control transfers. First it
requests the Device Descriptor, describing features of the whole device, such as the
supported USB version, maximum packet size, vendor and product identifiers and number of
possible configurations. Subsequent requests concern finer and finer detail about elements
of the device, as the diagram shows. In practice the complete descriptor is an extended array
of data, with each descriptor following on from the last.

The USB device descriptors used in the Flowcode USB components can be found in the
USB library entitled usb_config_x.c where x represents the specific Flowcode component.

Each descriptor starts with the same two fields. „bLength‟, which tells the host how many
bytes of data make up that descriptor, and „bDescriptorType‟ which identifies the information
it contains, as shown in the next table:

bDescriptorT
ype

Descriptor Type Description

0x01 Device Required

0x02 Configuration Required

0x03 String Optional descriptive text

0x04 Interface Required

0x05 Endpoint Not required if the device uses only Endpoint 0

0x06 Device_qualifier
Required only when device is both full and high
speed.

0x07

Other_speed_

configuration

Required only when device is both full and high
speed.

0x08 Interface_power
Required only for interface-level power
management

0x09 OTG Only for On The Go USB devices

0x0A Debug Optional

0x0B
Interface_associa
tion

Only for composite devices

The field „bDescriptorType‟ is one byte long.
The entries in the table are the standard descriptor types, and use only bits 0 to 3. There can
be other descriptor types, using bit 4 in addition.
Bit 7 is always zero. Bits 6 and 5 identify the source of the descriptor type, as follows:

USB Solution – Student Guide

EB540-80-04 USB Solution 19 Copyright © 2014 Matrix TSL

 00 = standard;
 01 = class-defined;
 10 = vendor-defined;
 11 = reserved.

5.2 USB Device Descriptors:

Each device has only one Device Descriptor, the format of which is shown below:

Offset Field Bytes Value Description

0 bLength 1 Number Size of the descriptor in bytes

1 bDescriptorType 1 Constant Device descriptor

2 bcdUSB 2 BCD USB specification number

4 bDeviceClass 1 Class Class Code

5 bDeviceSubClass 1 SubClass Subclass Code

6 bDeviceProtocol 1 Protocol Protocol Code

7 bMaxPacketSize 1 Number Maximum Packet Size for endpoint 0

8 idVendor 2 ID Vendor ID

10 idProduct 2 ID Product ID

12 bcdDevice 2 BCD Release number

14 iManufacturer 1 Index Index of manufacturer string

15 iProduct 1 Index Index of product string

16 iSerialNumber 1 Index Index of serial number string

17 bNumConfigurations 1 Integer Number of possible configurations

5.3 USB Configuration Descriptors

The configuration descriptor specifies a number of different properties which relate to how
the device will behave whilst running in this configuration. This includes settings such as how
the device is powered and the maximum power consumption. It is therefore possible to
create USB devices with more than one configuration descriptor. An example of this would
be to allow the device to run in a high power mode when only connected via the USB and
then use an alternative low power mode when connected to a mains power source.

Offset Field Bytes Value Description

0 bLength 1 Number Size of the descriptor in bytes

1 bDescriptorType 1 Constant Configuration descriptor

2 wTotalLength 2 Number Total length of the data returned

4 bNumInterfaces 1 Number Number of interfaces

5 bConfigurationValue 1 Number Value to select this configuration

6 iConfiguration 1 Index Index of string descriptor

7 bmAttributes 1 Bitmap Power configuration and wakeup control

8 bMaxPower 1 mA Maximum power consumption

USB Solution – Student Guide

EB540-80-04 USB Solution 20 Copyright © 2014 Matrix TSL

5.4 USB Interface Descriptors

The interface descriptor represents a single feature of the device. The USB serial Flowcode
component uses two interface descriptors. One handles the device emulation as a COM port.
The other is responsible for the pipes used to stream the serial data.

Offset Field Bytes Value Description

0 bLength 1 Number Size of the descriptor in bytes

1 bDescriptorType 1 Constant Interface descriptor

2 bInterfaceNumber 1 Number Number of interface

3 bAlternateSetting 1 Number Value used to select alternate setting

4 bNumEndpoints 1 Number Number of endpoints used by the interface

5 bInterfaceClass 1 Class Class code

6 bInterfaceSubClass 1 SubClass Subclass code

7 bInterfaceProtocol 1 Protocol Protocol code

8 iInterface 1 Index Index of string descriptor for this interface

4.5 USB Endpoint Descriptors

The endpoint descriptor describes endpoints other than endpoint zero, which is always
assumed to be a control endpoint and is configured before any descriptors are requested.
The host will use the information provided in the descriptors to determine the overall
bandwidth requirements of the USB device.

Offset Field Bytes Value Description

0 bLength 1 Number Size of the descriptor in bytes

1 bDescriptorType 1 Constant Endpoint descriptor

2 bEndpointAddress 1 Endpoint Endpoint address

3 bmAttributes 1 Bitmap Transfer and synchronisation type

4 wMaxPacketSize 2 Number Maximum packet size

6 bInterval 1 Number Interval for polling endpoint data transfers

4.6 USB String Descriptors

The string descriptor is an optional part of the descriptor chain and is used to provide human
readable information such as the product name or manufacturer. The first string descriptor is
used to allow support for multiple languages.

Language String Descriptor

Offset Field Bytes Value Description

0 bLength 1 Number Size of the descriptor in bytes

1 bDescriptorType 1 Constant String descriptor

2 wLANGID[0] 2 Number Supported language - 0x0409 - US English

4 wLANGID[1] 2 Number Supported language - 0x0809 - UK English

6 wLANGID[2] 2 Number Supported language - 0x0407 - German

String Descriptor

Offset Field Bytes Value Description

0 bLength 1 Number Size of the descriptor in bytes

1 bDescriptorType 1 Constant String descriptor

2 bString n Unicode Unicode encoded string

USB Solution – Student Guide

EB540-80-04 USB Solution 21 Copyright © 2014 Matrix TSL

6 The Matrix USB Training Solution

6.1 Solution Overview

The Matrix USB solution comes with everything needed for USB device development and
can be used to develop a full application. The PIC18F4455 microcontroller fitted into the
EB006 Multiprogrammer has a Full Speed USB hardware peripheral, which allows for easy
exploration of the USB architecture. The device uses a phase locked loop to generate a
stable clock speed of 48MHz from a clock source of 4MHz. PIC microcontrollers process a
single assembler instruction for every four clock cycles so the clock speed of 48MHz is
therefore crucial for enabling the device to run at a speed of 12 million instructions per
second, the exact speed of a Full Speed USB communication.

The following diagram indicates the default layout of the E-blocks and the default jumper
locations and wiring. A complete list of the jumper settings and wiring links are given on the
next page.

USB Solution – Student Guide

EB540-80-04 USB Solution 22 Copyright © 2014 Matrix TSL

USB Solution – Student Guide

EB540-80-04 USB Solution 23 Copyright © 2014 Matrix TSL

6.2 Default connections and settings:

 EB090 – Sensors E-Block
 Connected to Port A using IDC Cable
 +V terminal connected to +V on EB006
 Jumper Settings – Default

 EB004 – LEDs E-Block
 Connected to Port E using IDC Cable

 EB005 – LCD E-Block
 Connected to Port B
 +V terminal connected to +V on EB006
 Jumper Settings – Default

 EB006 – Multiprogrammer E-Block
 PIC18F4455 fitted to 40-way socket
 4MHz Crystal fitted to crystal socket
 Target Voltage Jumper J15 – 5V
 Power Jumper J11 – PSU
 Connections Jumper J14 – USB
 Oscillator Jumper J18 – OSC

 EB014 – Keypad E-Block
 Connected to Port D

 EB015 – RS232 E-Block
 Connected to Port C using IDC splitter cable
 +V terminal connected to +V on EB006
 Data Jumper J4 – Position C
 Flow Control Jumper J7 – Position 3
 Single Wire Link – Pin 0 to Pin RTS
 Single Wire Link – Pin 1 to Pin CTS

 EB055 – USB E-Block
 Connected to Port C using IDC splitter cable
 Jumper settings – Position A

USB Solution – Student Guide

EB540-80-04 USB Solution 24 Copyright © 2014 Matrix TSL

7 Flowcode and USB

The Flowcode software is a powerful flowcharting language designed for microcontrollers.
The PIC version, which we will be using with the 18F4455 microcontroller, comes complete
with three distinct USB components i.e. three integral USB device descriptors that allow the
device to connect in one of three possible modes. The components also come with driver
generation tools so that you can customise your device to your requirements where required,
and generate the device driver for the host without tedious manual editing.

The Flowcode USB components are as follows:
 USB Serial – emulates a communications port to replace legacy serial ports.
 USB HID – highly configurable human interface device.
 USB Slave – turns the microcontroller into a slave to the host.

Each component essentially creates two data endpoints to allow bidirectional communication
between the embedded device and the USB host. With the underlying USB bus endpoints,
device drivers, device descriptors and communications taken care of, all that remains is to
create the data arrays used to transmit and receive data. Using Flowcode, we can therefore
forget that the device uses USB, and treat it is a simple high speed, low-level, bi-directional
serial data cable.

7.1 USB Serial Component

The simplest of the USB components, it can be treated as a normal serial RS232 connection.
The USB host sees the device as a communications port, once the driver has been installed,
and allows programs like Hyperterminal and Labview to create a direct communications link
to the device. The component allows you to read or write single bytes or full strings, and so it
can be used to create a true RS232 converter or replacement.

7.2 USB HID Component

This is similar to the serial component, in that you can use it to read and write data, but in
addition, communication is now a timed event, controlled by the computer. For example, it
can be used to create a simple USB keyboard. A standard HID keyboard transfers 8 bytes of
information to the USB host in regular intervals of say 10 milliseconds. All your program has
to do, therefore, is to update the device‟s IN data buffer based on key press readings. It
should also check the OUT data buffer for the status of the LEDs.

The HID component relies on a HID descriptor stored in the embedded device, which is used
to enumerate the device and integrate it into the system, instead of requiring a device driver
like the other two USB components. The component comes with two HID descriptors that set
the device up as either a standard keyboard or as a mouse. A third custom descriptor is also
available that can be adapted by the user, with the HID descriptor generation tool available
from the HID page of the USB standards website.

HID descriptors can cover a wide variety of devices such as printers, speakers, touch-screen
monitors etc.

7.3 USB Slave Component

The USB slave component forces the microcontroller to become a slave to the computer in
that it must receive data from the USB host before trying to send data back. This is useful for
creating question / answer style systems. Again Flowcode simplifies the task by allowing a
configurable slave service macro. This software macro is called whenever data from the USB

USB Solution – Student Guide

EB540-80-04 USB Solution 25 Copyright © 2014 Matrix TSL

host is received. This allows you to process the incoming data as soon as it arrives, make
decisions and respond with a timely appropriate answer.

One example of this is a command to sample an analogue channel. The acknowledgement
could then contain the result of the sampling. As the data is in the form of an array, you can
use the command and acknowledge functionality to transfer fairly large amounts of data.

7.4 Enumeration Wait Setting

Each of the USB components has a property entitled „enumeration wait‟. With this option un-
ticked, the component will wait forever for drivers to be installed onto the PC before returning
from the macro. This is handy when first getting to grips with the component, as it allows you
unlimited time to install the driver correctly. When this option is ticked, a timeout delay can be
specified in seconds, allowing you to use the „initialise‟ macro to test for a USB connection in
a program where you do not necessarily need a permanent USB. The „initialise‟ macro
returns „0‟ for a successful start-up and „255‟ for an initialisation error or connection timeout.

USB Solution – Student Guide

EB540-80-04 USB Solution 26 Copyright © 2014 Matrix TSL

8 USB Serial device

8.1 Installing the Device Driver

A microcontroller running the USB Serial Flowcode component will require a device driver to
allow it to work correctly with Windows. The device driver has a „.inf‟ file extension, and can
be generated via the Properties page of the Flowcode component. This ensures that the
driver matches the names and identifiers specified in the component properties.
Consequently, you should always create the driver after setting up the component properties.

When you first plug in the device, you will see a screen similar to the one below. (If this does
not appear, you can force a driver installation by going into Device Manager, right clicking the
device and selecting „Update driver software‟. One way to enter Device Manager is to click
the Start menu, select „Run...‟, type in „”devmgmt.msc” and hit the Enter key)
Select the „Install from a list or specific location,‟ option and then click „Next >‟.

Now click the browse button and browse to the location on your computer where you saved
the driver file to. Once you have setup the path to the file, use the „Next >‟button to continue.

USB Solution – Student Guide

EB540-80-04 USB Solution 27 Copyright © 2014 Matrix TSL

After a short delay, the driver should start installing. If you receive a red dialogue message
saying that the device has not been tested, click „OK‟ to proceed.

Once the driver is installed, you will be presented with the following screen. Click „Finish‟ to
complete the wizard and start using your device.

8.2 USB Serial Device and HyperTerminal

You must use terminal emulator software to communicate with the USB Serial device.
Windows XP and earlier systems come with a suitable package called HyperTerminal. Newer
Windows operating systems do not include the HyperTerminal software as standard but it
can be downloaded from the Hilgraeve website. There is also a freeware alternative, named
Realterm, available from the Sourceforge website. Software such as Visual Basic, and
Labview, come can access the communications port directly.

To run HyperTerminal click the Start menu, select „Run...‟ type in “hypertrm” and hit the Enter
key.

USB Solution – Student Guide

EB540-80-04 USB Solution 28 Copyright © 2014 Matrix TSL

Once you have opened HyperTerminal you must name the connection. Once you have
entered a name click OK.

Next you must assign the correct port for the connection. Select this from the drop-down list
and then click OK.

If you do not know which COM port your USB Serial device is connected to, then open the
Device Manager application. The USB Serial device will appear under the Ports section once
the driver has been installed. If the driver has not been installed, then please refer back to
the previous section.

Use the next window to configure aspects of the COM port connection, such as transfer rate.
The settings can be left at the values shown above. For some applications, the transfer rate
can be raised or lowered. For a USB to RS232 device, it must match the device‟s throughput
otherwise a data bottleneck may result, causing missed data or program instability.

Once you have configured the properties, click „OK‟. You should now be connected to the
USB device. Any characters typed into the HyperTerminal window will be forwarded to the
USB device. Any data sent back will be displayed in ASCII format.

USB Solution – Student Guide

EB540-80-04 USB Solution 29 Copyright © 2014 Matrix TSL

9 USB Slave Device

9.1 Installing the Device Driver

A microcontroller running the USB Slave Flowcode component also needs a device driver to
allow it to work with Windows. As before, the driver has a „.inf‟ file extension. Generating it
from the Properties page of the Flowcode component ensures that the driver matches the
names and identifiers specified in the component properties. Therefore you should always
create the driver after you have setup the component properties. The driver .inf file for the
USB Slave component requires a few additional support files, provided on the solution CD
and in the Slave example folders.

When you first plug in the device, you will see a
screen similar to the one opposite.

(If this does not appear, you can force a driver
installation by going into Device Manager, right
clicking the device and selecting „Update driver
software‟. One way to enter Device Manager is to
click the Start menu, select „Run...‟, type in
„”devmgmt.msc” and hit the Enter key)

Select the „Install from a list or specific location,‟
option and then click „Next >‟.

Now browse to the location on your computer that
you saved the driver file to.

Once you have setup the path to the file, use the
„Next >‟button to continue.

After a short delay, the driver should start
installing.

If you receive a red dialogue message saying that
the device has not been tested, click „OK‟ and
proceed.

USB Solution – Student Guide

EB540-80-04 USB Solution 30 Copyright © 2014 Matrix TSL

Once the driver has finished installing you will see
the screen shown opposite.

Click „Finish‟ to complete the wizard and start
using your device.

9.2 USB Slave and Visual Basic

To communicate with the USB Slave device you
must use a DLL that has been written for that purpose. The functions included in the DLL are
as follows.

ECIO_GetDLLVersion ()
Returns the DLL version number

ECIO_GetDeviceCount (Identifier)
Identifier – array containing the VID and PID of the device.
Returns the number of USB Slave devices with a matching VID and PID.

ECIO_Open (Index, Identifier)
Index – index of the device you wish to connect to.
Identifier – array containing the VID and PID of the device.
Returns the connection status: 0=Error, 1=Connection opened

ECIO_Transmit (DataOut, LenOut, ALenOut, DataIn, LenIn, ALenIn, Timeout)
DataOut – Data array to send to the device
LenOut – Number of bytes to send
ALenOut – Actual number of bytes sent
DataIn – Data array to store data received from the device
LenIn – Number of bytes to receive
ALenIn – Actual number of bytes received
Timeout – Length of time in milliseconds to wait for incoming data
Returns the communication status: 0=Error, 1=Communication successful

ECIO_Close ()
Returns the connection status: 0=Error, 1= Connection closed

Though the functions are all named “ECIO” they will work with any device that is capable of
running the USB Slave component. (The Matrix ECIO was the first device that developed for
use with the component and the DLL.)

The USB identifier numbers are defined by a byte array containing the VID and PID
information in the form of a string. The default USB Slave identifier string would look
something like this: “vid_12bf&pid_f030”.

Refer to the sample VB projects in the solution when creating new applications. They could
even be used to create a template, as they contain all the definitions needed to allow the DLL
functions to be referenced correctly.

USB Solution – Student Guide

EB540-80-04 USB Solution 31 Copyright © 2014 Matrix TSL

10 USB HID Custom Descriptor Generation

The HID descriptor replaces the driver that is required for most other USB devices. It is
responsible for informing the computer what capabilities the device has and how the data will
be formatted. The descriptor is fairly complicated to generate by hand so there is a descriptor
tool available from the USB organisation that will generate the device descriptors for you.
This tool is included on the solution CD or can be downloaded from the following page.
www.usb.org/developers/hidpage/

Several sample descriptors are available by clicking on „File‟ and „Open...‟ and browsing the
descriptor tool folder. Here is the generated descriptor for a mouse as used in example 1.

http://www.usb.org/developers/hidpage/

USB Solution – Student Guide

EB540-80-04 USB Solution 32 Copyright © 2014 Matrix TSL

11 PIC18F4455 Configuration

The PIC18F4455 microcontroller should be configured using the following settings to allow it
to work correctly with the hardware in the solution. The chip can be configured in Flowcode
by using the „Configure‟ tab in the „Project Options‟, which is accessed from the „Build‟ menu.

USB Solution – Student Guide

EB540-80-04 USB Solution 33 Copyright © 2014 Matrix TSL

12 The USB Assignments

With drivers and other resources such as Visual Basic programs and code generation tools,
you can use the examples as a guide to each component, in conjunction with this manual.
Alternatively you can try to produce your own version of each program from scratch, by
following the tuition provided in this manual.

Some previous knowledge will be required to carry out the full range of example programs.

To get started with Flowcode, we recommend you follow the Flowcode course entitled „An
Introduction to Microcontrollers‟, which can be found on our website. www.matrixltd.com/

Here is an overview of the exercises covered in the solution.

 Human Interface Device: Mouse
 Full USB Mouse using the HID Standard.

 Human Interface Device: Keyboard
 Full USB Keypad using the HID Standard

 Human Interface Device: Data-Logger
 Using the HID Standard to our advantage

 Communications Device: USB Terminal
 Talking with the USB Serial device

 Communications Device: USB to RS232 converter
 Using the USB device to convert to the serial protocol

 Slave Device: Basic Slave
 Example of using the slave

 Slave Device: Storage Scope
 Taking the slave example a little further

 Slave Device: Triggered Scope
 Building more intelligence into the slave

http://www.matrixltd.com/

USB Solution – Student Guide

EB540-80-04 USB Solution 34 Copyright © 2014 Matrix TSL

13 Exercise 1 – Human Interface Device: Mouse

13.1 Introduction

The aim is to set up your very first USB device, a mouse
simulated by the keypad E-Block. This has enough inputs to allow
you to move the cursor around a screen and click the mouse
buttons. The diagram shows which keys provide which mouse
functions.

13.2 Objective

The objective of the exercise is to write a Flowcode program, to
create a USB mouse, controlled from the keypad E-Block.

The keypad should be used as shown on the right with the
numbers 1,2,3,4,6,7,8 and 9 being used to control the mouse
cursor movement. The „‟ button should control the left mouse
button (LMB) and the „#‟ button the right mouse button (RMB).

13.3 Target microcontroller

The target microcontroller is an 18F4455, which should be
configured as shown in section 7 of this manual.

13.4 Flowcode USB HID component

The USB HID component has a number of associated macros. The first macro „Initialise‟ sets
up the USB component and then waits for the PC to install device drivers. Once this is
completed, you get a return value stating the result of the initialisation. For more details
please refer to the component help file.

13.5 USB HID component settings

The USB HID component properties should be configured as follows, in order to allow the
mouse functionality to work.

The first half of the USB HID component properties
includes the device parameters such as the identifier
values and the name of the device, as well as
additional information such as the manufacturer and
version.

The second half of the properties configures the
incoming and outgoing packet sizes, the
communications period and the device country.
Country code 0 stands for an international device.

The subclass and interface properties are only used
in generic USB mice and keyboard devices.
The boot option makes the USB compatible with low
level HID allowing you to use the device in BIOS or
DOS. The descriptor select option can be set to
mouse, keyboard or custom descriptor, allowing you
to enter your own HID descriptions.

USB Solution – Student Guide

EB540-80-04 USB Solution 35 Copyright © 2014 Matrix TSL

13.6 The Flowcode program in detail

The program will:

 initialise the USB device and wait for the computer to acknowledge;

 scan the keypad for a button press;

 and then:
 convert the keypress into a valid mouse input;
 send the data to the computer;
 wait for the key to be released;
 clear the mouse input.

13.7 A Generic USB Mouse

The USB mouse HID descriptor requires a 3-byte array to represent the mouse control
vector. The first byte represents button presses where bit0 represents the left mouse button
and bit1 represents the right mouse button. The other two bytes represent movement on the
X and Y axis. The movement bytes use a signed format where any value over 127
represents a negative number. Therefore 0 = no movement, 1 to 127 represents a positive
direction movement and 128 to 255 represents a negative direction movement. The value
sent also defines the speed of the mouse movement so 1 would be a slow positive
movement whereas 127 would be a fast positive movement. Likewise 255 would be a slow
negative movement whereas 128 would be a fast negative movement. The position values
represent the movement since the last sample so after a movement (e.g. when a key is
released,) the control value is set back to 0. Otherwise the mouse cursor will continue to
move in the current direction at the current speed.

13.8 What to do

 Create a string variable that is three bytes long to store the outgoing data.

 Add a USB HID component and configure the properties as shown above.

 Start the USB component by using a component macro to call the initialise function.

 Add a keypad component and then use a component macro to check for a key press.

 When a key press occurs use a switch case to assign the correct information to the
USB outgoing data buffer.

 Send the buffer to the PC every 10 milliseconds until the key press is removed.

 Once the key press is removed clear the data buffer and resend to the computer.

USB Solution – Student Guide

EB540-80-04 USB Solution 36 Copyright © 2014 Matrix TSL

13.9 Further Work

To take the example further try creating an “auto-fire mouse” that will perform a double click
action by using the unused „5‟ key.

Clicking and dragging is an important feature of an everyday mouse. Try holding the „‟ key
and moving the mouse cursor at the same time using the keypad. Can you explain the
results?

A workaround to allow this functionality could be created by using the „0‟ key for a toggled left
button click action. For example, the first press could hold the left mouse button down and
the next press brings it back up.

USB Solution – Student Guide

EB540-80-04 USB Solution 37 Copyright © 2014 Matrix TSL

14 Exercise 2 – Human Interface Device: Keyboard

14.1 Introduction

The aim is to set up a generic USB keyboard. The input for the device will come from the
keypad E-Block, allowing us to enter the ASCII characters 0-9, „‟ and „#‟.

14.2 Objective

The objective is to write a Flowcode program to create a USB keyboard controlled from the
keypad E-Block. We will use the LED E-Block to read back the status of the toggle keys -
caps lock, num lock and scroll lock.

14.3 Flowcode USB HID component

Incoming data is received using the CheckRx component macro, which returns the number
of bytes available and waiting to be read. A return value greater than 0 means that data is
waiting. The data is read into Flowcode one byte at a time, using the ReceiveByte
component macro. Addressing for this macro runs from 0 to (number of available bytes – 1).

For a standard USB keyboard, there is a single byte return value. We will use it to operate
LEDs, to show operation of Num Lock (bit 0), Caps Lock (bit 1) and Scroll Lock (bit 2).

14.4 USB HID component settings

The USB HID component properties should be configured as follows, in order to allow the
mouse functionality to work.

The first half of the USB HID component properties
includes the device parameters such as the identifier
values and the name of the device, as well as
additional information such as the manufacturer and
version.

The second half of the properties configures the
incoming and outgoing packet sizes, the
communications period and the device country.
Country code 0 stands for an international device.

The subclass and interface properties are only used
in generic USB mice and keyboard devices.
The boot option makes the USB compatible with low
level HID allowing you to use the device in BIOS or
DOS. The descriptor select option can be set to
mouse, keyboard or custom descriptor, allowing you
to enter your own HID descriptions.

14.5 The Flowcode program in detail

The program will:

 initialise the USB device and wait for the computer to acknowledge;

 check for an incoming byte;

USB Solution – Student Guide

EB540-80-04 USB Solution 38 Copyright © 2014 Matrix TSL

 and when one arrives:

 read the data byte and

 forward the byte to the LEDs;

 scan the keypad for a button press;

 and when a button is pressed:
 convert the keypress into a valid keyboard input;
 send the data to the computer;
 wait for the key to be released;
 clear the mouse input;

14.6 A Generic USB Keyboard

The USB keyboard HID descriptor requires a 8-byte array to represent the keyboard control
vector.

Bytes 0 and 1 in the array represent modifier keys - functions like Shift, Control and Alt.
The remaining six bytes are used for key press data.
This means that a maximum of up to 2 modifier keys and up to 6 data keys can be pressed
at any one time.

Data Array Data [0] Data [1] Data [2] Data [3] Data [4] Data [5] Data [6] Data [7]

Key Press Modifier1 Modifier2 Key1 Key2 Key3 Key4 Key5 Key6

Here is a list of commonly used key press data values:

Key Press Data Key Press Data Key Press Data Key Press Data

A 0x04 N 0x11 Carriage Return 0x28 1 0x59

B 0x05 O 0x12 Tab 0x2B 2 0x5A

C 0x06 P 0x13 Caps Lock 0x39 3 0x5B

D 0x07 Q 0x14 Scroll Lock 0x47 4 0x5C

E 0x08 R 0x15 Num Lock 0x53 5 0x5D

F 0x09 S 0x16 / 0x54 6 0x5E

G 0x0A T 0x17 * 0x55 7 0x5F

H 0x0B U 0x18 - 0x56 8 0x60

I 0x0C V 0x19 + 0x57 9 0x61

J 0x0D W 0x1A 0 0x62

K 0x0E X 0x1B \ 0x64

L 0x0F Y 0x1C

M 0x10 Z 0x1D

And here is a list of the commonly used modifier key press values:

Key Press Modifier

Left Control 0x01

Left Shift 0x02

Left Alt 0x04

Right Control 0x10

Right Shift 0x20

Right Alt 0x40

A full list of key press values and modifier codes can be found at.
www.win.tue.nl/~aeb/linux/kbd/scancodes-14.html

http://www.win.tue.nl/~aeb/linux/kbd/scancodes-14.html

USB Solution – Student Guide

EB540-80-04 USB Solution 39 Copyright © 2014 Matrix TSL

14.7 What to do

 Create a string variable that is eight bytes long to store the outgoing data.

 Add a USB HID component and configure the properties as shown above.

 Start the USB component by using a component macro to call the initialise function.

 Add a keypad component and then use a component macro to check for a key press.

 When a key press occurs use a switch case to assign the correct information to the
USB outgoing data buffer.

 Send the buffer to the PC every 10 ms until the key press has been removed.

 Then clear the data buffer and resend to the computer.

 Check the incoming buffer for data, if data is available then forward to the LEDs.

14.8 Further Work

To take the example further try modifying the program so that when you press a key on the
keypad you get a string of data output to the PC. This will involve sensing a key press and
then performing several outgoing transactions to loop through and send each character in
the string. A good use for this would be to create a shorthand keypad that has a list of
common words or sentences built in so you do not have to type them manually.

USB Solution – Student Guide

EB540-80-04 USB Solution 40 Copyright © 2014 Matrix TSL

15 Exercise 3 – Human Interface Device: Data-Logger

15.1 Introduction

The aim is to set up a basic data logging application using the keyboard created in the last
exercise. We will sample an analogue sensor using an analogue-to-digital converter and then
transfer this sample via USB.

15.2 Objective

The objective is to use the HID keyboard to send numerical data into the computer
automatically. We will sample data from the light dependant resistor (LDR) embedded onto
the Sensors E-Block board. The LDR is hard-wired to analogue channel 0 on pin 0 of Port A.

15.3 USB HID component settings

The USB HID component properties are configured as in the previous example.

15.4 The Flowcode program in detail

The program will:

 initialise the USB device and wait for the computer to acknowledge;

 wait for the num lock LED to be switched on;

 while the num lock LED is switched on
 sample the voltage from the light dependant resistor;
 convert the reading into an array of key press values;
 send each key press in the array to the computer;
 send a carriage return character to move the cursor to the next line;
 reset the control vector and start the next sample.

15.5 Storing the data

A data-logger takes a large number of measurements, over a period of time, and stores
them.

For this data-logger application we use Microsoft Excel to store the data. This offers simple
numerical input, combined with an easy way to plot the resulting data.

To illustrate the process, select a data cell in Excel and use the numeric keypad to enter
some data. Then hit the „Enter‟ key and you will notice that the highlighted data cell moves
down a row.

Therefore, we need the USB device to output each sample in the form of a decimal number.
As the sample can be between 0 and 255, i.e. up to three digits long, this involves up to three
emulated key presses to transmit the digits of the number.

To finish the process we send out a carriage return key press.

USB Solution – Student Guide

EB540-80-04 USB Solution 41 Copyright © 2014 Matrix TSL

15.6 What to do

 Create a string variable that is eight bytes long to store the outgoing data.

 Add a USB HID component and configure the properties as in the previous example.

 Add an ADC component to your program and ensure it is connected to channel AN0.

 Start up the USB component by using a component macro to call the initialise
function.

 Check for incoming data and forward it to LEDs.

 Test the Num Lock LED and if it is active do the following:
o Use a component macro to sample the analogue channel and store the

resulting value in a byte variable.
o Convert this byte variable into a string variable using the string manipulation

function “ToString”.
o For each byte in the string, fill the IN data buffer with the appropriate data and

send to the computer.
o Delay for 10 milliseconds between each character that is sent.
o Fill the IN data buffer with a carriage return and send to the computer.
o Empty the IN data buffer and send to the computer so that it is aware that no

keys are being pressed.

15.7 Further Work

To take the example further, try replicating the computer num lock control by using the
keypad E-Block to enable or disable the num lock LED.

USB Solution – Student Guide

EB540-80-04 USB Solution 42 Copyright © 2014 Matrix TSL

16 Exercise 4 – Communications Device: USB Terminal

16.1 Introduction

The aim is to create a connection to a computer using the USB Serial Flowcode component.
You will create a basic terminal to send data from a computer to the LCD on the solution
board. Equally, ASCII data, entered via the keypad, will be transmitted to the computer.

16.2 Objective

The objective is to write a Flowcode program to create a USB serial connection that can be
used to stream data to and from the computer.

The keypad is read using the ASCII output component macro, so that the data is placed
directly into the USB component macro for transmitting to the computer.

16.3 Flowcode USB Serial component

The USB Serial component has a number of associated macros. The first, called „Initialise‟,
sets up the USB component and waits for the PC to install device drivers. Once this is done,
you receive a return value stating the result of the initialisation.

For more details on the functionality of the macros used by the USB_Serial component,
please refer to the component help file.

To configure your computer for use with the USB serial peripheral you should refer to
sections 5 and 6 of this manual.

16.4 USB Serial component settings

The USB Serial component properties should be configured as follows:

The USB Serial component properties allow you to
configure the USB device parameters such as the
identifier values and the name of the device, as well
as the manufacturer and version. The Generate
Driver property can be used to generate a driver file
compatible with the device parameters you have
configured.

USB Solution – Student Guide

EB540-80-04 USB Solution 43 Copyright © 2014 Matrix TSL

16.5 The Flowcode program in detail

The program will:

 initialise the USB device and wait for the computer to send an acknowledgement;

 scan the keypad for a button press in ASCII format;

 and when one happens:
 forward the key press to the computer;
 wait for the key to be released;

 check for incoming data from the USB;

 and when it receives it:
 print the data to the LCD using the Print ASCII function.

16.6 A Generic USB Serial Port

The USB Serial Flowcode component operates in a similar way to the RS232 Flowcode
component. We can send data to the computer at any time by simply calling either the
SendByte or SendString component macros. At the same time, we can also read data
coming from the computer by using either the ReadByte or ReadString component macros.
When reading incoming data in byte form a return value of 255 signifies that no new data has
been received. If the value is less than 255 then we know that valid data has been received.
The ReadString macro tries to read a string of a specific length and then return the entire
string to Flowcode. If a timeout occurs before the data has been received, then the macro will
return any data received before the timeout occurred. The data is stored in incoming and
outgoing buffers, both 64 bytes in length, so that you can write and read data to and from the
bus without having to worry about missing data.

16.7 What to do:

 Add a USB Serial component and configure the properties as shown above.

 Start up the USB component by using the Initialise component macro.

 Add a keypad component and then use a component macro to check for a key press.

 When a key press occurs, use a USB component macro to send the key press to the
computer, and then wait for the key to be released.

 Check for incoming data from the computer.

 When any is detected, print it to the LCD using the PrintAscii component macro.

16.8 Further Work

The LCD display can only show two lines of 16 characters. Try formatting the output data so
that, when you reach the end of the first line of text, you move automatically onto the second
line. You could even add functionality to allow you to press the back space key on your
computer to allow you to delete characters from the LCD print out.

USB Solution – Student Guide

EB540-80-04 USB Solution 44 Copyright © 2014 Matrix TSL

17 Exercise 5 – Communications Device: USB to RS232 protocol
bridge

17.1 Introduction

The aim is to show how to create a connection to a legacy RS232 COM port device.

Modern computer systems no longer come with a hardware COM port as standard so when
a system requires a RS232 COM port connection, we have to find another way of interfacing
the device. The USB Serial Flowcode component provides a means of doing just that.
Moreover, it is fully compatible with the existing COM port software and hardware.

17.2 Objective

The objective is to write a Flowcode program to create a USB serial connection that can be
used to stream data to and from a legacy serial device.

The RS232 E-Block can be used to convert signals from the microcontroller into +/– 12V
signals used by the RS232 standard. If you are using a TTL level serial device, then you can
bypass the RS232 E-Block board and connect the microcontroller‟s Rx and Tx pins directly to
the serial device. If you do not have a serial device but have a built-in COM port on the
motherboard, you can use multiple versions of HyperTerminal or RealTerm on the same
computer to perform a loop-back action.

17.3 USB Serial component settings

The USB Serial component properties should be configured as shown in the previous
example.

17.4 The Flowcode program in detail

The program will:

 initialise the USB device and wait for the computer to acknowledge;

 check for incoming data from the RS232;

 and when it is received:
 forward the data to the computer via the USB link;

 check for incoming data from the USB;

 and when it is received:
 forward the data via RS232;

17.5 USB to Serial Bridge

This method of switching data from one protocol to another is often referred to as protocol
bridging.

When creating a protocol bridge, make sure that the data input rate is less than or equal to
the data output rate. If a device receives data at 9600 bytes per second but only transmits at
a rate of 4800 bytes per second, then the incoming data will start to pile up.

This limitation is often referred to as a bottleneck and should be avoided. A severe bottleneck
can cause data going to the remote device to be missed, and this can cause entire systems
to fail.

USB Solution – Student Guide

EB540-80-04 USB Solution 45 Copyright © 2014 Matrix TSL

17.6 What to do

 Add a USB Serial component and configure the properties as shown in Exercise 4.

 Start up the USB component by using the Initialise component macro.

 Add a keypad component and then use a component macro to check for a key press.

 When one occurs, use a USB component macro to send the key press to the
computer and then wait for the key to be released.

 Check for incoming data from the computer.

 When data is detected, print it to the LCD using the PrintAscii component macro.

17.7 Further Work

Use the LCD to print the data as it flows through the system. Data from the USB should go to
the top line of the LCD and data from the RS232 should go to the bottom line.

Consider other popular protocols that could be bridged using this communications method.
For example:

 SPI
 I2C
 Bluetooth
 ZigBee
 Ethernet
 ….

USB Solution – Student Guide

EB540-80-04 USB Solution 46 Copyright © 2014 Matrix TSL

18 Exercise 6 – Slave Device: Basic Slave Functionality

18.1 Introduction

The aim is to create a Flowcode program that will expose embedded functionality to the
computer. This ranges from taking direct control of a peripheral to reading back the value of
a variable or register in the embedded device.

The USB slave acts to hand over the control of a program to the computer while allowing
intelligence to be retained inside the microcontroller. This reduces the amount of work the
computer has to do, while allowing the microcontroller to hand over any low or high level
functionality to the computer.

An example of this is the analogue sample. The computer sends a command, to tell the
microcontroller to sample a specific analogue input channel. The microcontroller receives the
request and controls the analogue to digital conversion. It retrieves the sample from the
function registers and sends it to the computer. It stores, or processes, or displays it
graphically, or whatever...

This method of sharing out the work of a system with intelligent peripherals is referred to as
“distributed processing”.

18.2 Objective

The objective is to write a Flowcode program to create a USB slave device that can be used
to perform the following:

 control the LEDs connected to Port E;
 control the LCD connected to Port B;
 sample an analogue input channel;
 control which analogue channel is sampled;
 scan the keypad for a key press.

Each of these functions uses the microcontroller to perform the low level data manipulation
such as controlling the LCD or scanning the keypad array. The microcontroller passes
relevant information to the computer, allowing it to perform higher level functionality on the
data.

18.3 Flowcode USB Slave component

The USB Slave component has a number of associated macros, the first, entitled „Initialise‟,
sets up the USB component and then waits for the PC to install device drivers. Once this is
done, it returns a value indicating the result of the initialisation. For more details on the
macros used by the USB_Slave component, please refer to the component help file.

To configure your computer for use with the USB slave peripheral, refer to section 9 of this
manual.

You will also require a copy of Microsoft Visual Basic installed on your computer. The
Express Edition of Microsoft Visual Basic is fully compatible with the examples included in
the solution and can be downloaded for free from the MSDN website.

USB Solution – Student Guide

EB540-80-04 USB Solution 47 Copyright © 2014 Matrix TSL

18.4 USB Slave component settings

The USB Slave component properties should be configured as follows to allow the example
Visual Basic code functionality to work correctly.

The USB Properties section allows you to configure
the USB device parameters such as identifier values
and the name of the device. It also contains the
properties which control the maximum current
allowance for the device as well as the country code.

The Slave Macro Properties section determines
which Flowcode macro you wish to use for your slave
routine. The parameters should match with that of the
Flowcode macro, in this case there are two „Byte‟
parameters assigned to the macro.

Finally, the Generate Driver property can be used to
generate a driver file compatible with the device
parameters you have configured.

18.5 The Flowcode program in detail

The program will:

 initialise the USB device and wait for the computer to send an acknowledgement;

 start the USB slave service running;

 and when a transaction is received from the computer,:
 run the slave service macro;
 depending on the first input parameter, the macro will choose to:

 output the value of the second input parameter to the LEDs;
 output the value of the second input parameter to the LCD;
 sample analogue channel 0 or 1 depending on the value of the

second input parameter and then return the result;
 sample the keypad and return the result.

18.6 A USB Slave DLL Transaction

The USB Slave Flowcode component makes the device sit and wait for input from the
computer. When this is received, the Slave component runs a service macro. This handles
the incoming transaction, in a manner similar to that used by an interrupt macro when an
interrupt occurs.

The only restriction on the parameters used in the service macro is that they must
correspond to the Slave Service Macro Parameters option chosen in the USB Slave
Component Properties. The USB Slave component uses the macro parameters to pass the
incoming data from the computer to the macro. In the example above, we use two char
parameters. The first specifies the command and the second either the data to output or the
analogue channel to sample.

USB Solution – Student Guide

EB540-80-04 USB Solution 48 Copyright © 2014 Matrix TSL

If you need to return data from the Slave component, then you should do so within the
service routine. You can return only one set of data per transaction, so if you need to
transmit a large volume of data back to the computer, you must first create a string variable
to store the data. You will also need to ensure that the timeout specified in the computer DLL
call is enough to allow for the device to receive the command, perform a decision and then
collect and return the data.

In the Visual Basic examples, this timeout is set to 500 milliseconds. If data is received within
this time, the computer will immediately stop waiting and assume that the data it has
received is valid and complete.

18.7 Driver Support Files

The driver file created by Flowcode is not enough on its own to allow you to install the USB
Slave device. A set of driver support files are provided on the solution CD. Please copy these
files to your computer and then use Flowcode to overwrite the .inf file to match the USB
settings in your program. The driver support folder also contains .exe files which allow you to
preinstall the USB Slave device driver onto an x86 or x64 based system.

18.8 What to do

 Add a USB Slave component and configure the properties as shown above.

 Start up the USB component with the „Initialise component macro.

 Add a software macro and assign the macro with two byte parameters.

 Add a keypad component and two analogue components, connected to analogue
channels AN0 and AN1.

 Add a switch case icon to the service macro to switch depending on the first byte
parameter.

 In the switch case icon properties, tick the boxes next to options 1, 2, 3 and 4.

 For option 1, add an output icon to output the second parameter to Port E.

 For option 2, add a LCD component macro to output the second parameter to the
LCD as ASCII characters.

 For option 3, sample ADC0 if the second parameter is a 0, otherwise sample ADC1.
Then return the sample value, using the USB Slave SendByte component macro.

 For option 4, sample the keypad and again return the result to the computer using the
USB Slave SendByte component macro.

18.9 Further Work

What other functionality could you add to the program to reduce the computer workload?
Here are some examples of extra functionality you could add to the program.

 LCD Clear Command

 Output to any port

 Input from any port

 Reading a variable

 Modifying a variable

 Reading a register (requires C code)

 Modifying an internal register (requires C code)

USB Solution – Student Guide

EB540-80-04 USB Solution 49 Copyright © 2014 Matrix TSL

19 Exercise 7 – Slave Device: Storage Scope

19.1 Introduction

The aim is to create a Flowcode program to enable a computer to perform a particular task.
In this exercise, the task will be to sample and store an analogue voltage, using an analogue-
to-digital converter component.

The computer will specify the sample rate and will start and stop the data sampling. To allow
for a greater throughput of data we will customise the USB component to increase the size of
the data buffer.

19.2 Objective

The objective is to write a Flowcode program to create a USB Slave device to perform the
following functionality:

 change the rate of the timer interrupt;
 enable and disable the timer interrupt;
 retrieve a data array from memory;
 sample an analogue channel and store the result in data memory.

We will use component customisation to enhance the operation of the USB components.

19.3 The Flowcode program in detail

The program will:

 initialise the USB device and wait for the computer to send an acknowledgement;

 start the USB slave service running;

 and when a transaction is received from the computer:
 run the slave service macro;
 depending on the first input parameter, the macro will choose to:

 0x80: enable the Timer0 interrupt with Prescaler of 1:64;
 0x81: enable the Timer0 interrupt with Prescaler of 1:32;
 0x82: enable the Timer0 interrupt with Prescaler of 1:16;
 0x83: transmit the data array back to the computer;
 0x84: disable the timer interrupt

 Inside the interrupt service macro the program will:
 sample the analogue input pin
 store the result into the data buffer
 increment the current index of the data buffer

19.5 What to do

 Add a USB Slave component and configure the properties as shown above. This time
change the Slave service macro so that it only has a single char parameter.

 Start up the USB component with the „Initialise component macro.

 Add a software macro, and assign it a single byte parameter.

 Add an analogue component connected to analogue channel AN0.

 Add a switch case icon to the service macro to switch depending on the byte
parameter.

 In the switch case icon properties, tick the boxes next to options 1, 2, 3, 4 and 5.

 Update the switch case values to range from 0x80 to 0x84 to match the command
values sent from the VB program.

 For options 0x80 to 0x82, add an interrupt icon to configure timer 0 with the prescaler
settings mentioned earlier.

USB Solution – Student Guide

EB540-80-04 USB Solution 50 Copyright © 2014 Matrix TSL

 For option 0x83, add a USB component macro to transmit the data buffer to the
computer. Also, add a calculation icon to reset the buffer index value.

 For option 0x84, add an interrupt icon to disable the timer 0 interrupt.

 Inside the interrupt service macro, add a component macro to sample the analogue
channel. Use the index variable to keep track of the current byte position in the data
buffer.

19.6 Further Work

If you are using an XP based system, try changing the buffer variables and USB component
definitions to allow for a transaction size of 128 bytes.

Add a second analogue component, and add a new set of commands to switch the channel
of the analogue input source.

USB Solution – Student Guide

EB540-80-04 USB Solution 51 Copyright © 2014 Matrix TSL

20 Exercise 8 – Slave Device: Triggered Scope

20.1 Introduction

The aim is to add extra functionality to the program created in exercise 7. This will allow the
microcontroller to decide when to sample the inputs, leaving the computer free to process
other tasks or applications.

20.2 Objective

The objective is to write a Flowcode program to create a USB Slave device to perform the
following functionality:

 change the rate of a timer interrupt;
 enable and disable the timer interrupt;
 retrieve a data array from memory;
 monitor an analogue channel for a trigger event;
 and when the trigger event is detected:

 sample the analogue channel;
 store the result in data memory;
 periodically send the data to the computer;
 after sending 800 samples, reset the trigger event and repeat.

20.3 The Flowcode program in detail

The program is that produced in Exercise 7 with the following additions:

 when a transaction is received from the computer the program will:
 run the slave service macro;
 depending on the input parameter the macro will choose to:

 0x70: enable the Timer0 interrupt with Prescaler of 1:32.
 0x71: transmit the data array back to the computer.
 0x72: disable the timer interrupt.
 0x73: assign a new trigger threshold value.
 0x74: change the analogue channel that is being monitored.

 Inside the interrupt service macro the program will:
 sample the analogue input pin;
 set a triggered variable when the analogue value is above the

trigger threshold;
 store the result into the data buffer if the triggered variable is set.

20.4 What to do

Add the trigger and channel selection code to the existing program 7. The command values
in the Slave service routine must be changed to match the Visual Basic example for exercise
8. Remember that the example files are available, if you are unsure as to what is required.

20.5 Further work

Add functionality to allow for trigger events from different analogue channels. When a
specific channel generates a trigger event, that channel should be sampled until the trigger
event has been reset. This allows for intelligent channel switching.

Devise ways of transferring other functionality from the computer to the USB Slave
component.

USB Solution – Student Guide

EB540-80-04 USB Solution 52 Copyright © 2014 Matrix TSL

21 The USB C Code Library

The USB components in Flowcode are driven by means of the component C code file and
the USB library. The C code file works like any other Flowcode C component control file
using the functions available to Flowcode.

The USB library is accessible at the following location inside the default Flowcode directory:

C:\Program Files\ Flowcode 6\compilers\pic\boostc\include\USB

For every component, a pair of .c and .h files control the device class and a usb_config file
controls the device descriptors. Further files handle the underlying generic USB functionality.

