
EB043 Graphical LCD Programming Strategy

The EB043 Graphical LCD E-Block comes complete with test code and sample code
to help get you started with programming your own graphical LCD operations.

This document will explain how to use the sample C functions to allow you to make
your own graphical LCD programs and routines.

Contents of the Graphical LCD programmer support package

Here is a list of the files that you receive to support your MMC E-Block.

• GFX_LCD_Functions.c – C code file with simple driver functions.
• GFX_LCD_Functions.h – Header file with the definitions of the C functions.
• E-Blocks.fcf – Flowcode file demonstrating most Graphical LCD functions.
• Text.fcf – Flowcode file demonstrating Graphical LCD text functions.
• Plot.fcf – Flowcode file demonstrating Graphical LCD image functions.

Including the C functions in your program

To include the C functions into your programs you will need to copy the
GFX_LCD_Functions.c and the GFX_LCD_Functions.h files into the directory
containing your program and then do the following.

Flowcode Users:

Add the following lines into the supplementary code window available from the Edit
menu.

BoostC Users:

Add the following lines to the beginning of your program.
#include “GFX_LCD_Functions.h”
#include “GFX_LCD_Functions.c”

Other PIC C Users:

The Functions and header files will need to be ported into your version of C. This
should be a relatively easy job and should be fairly self evident if you a familiar with
your particular version of C.

Graphical LCD Commands

Here is a brief example of some of the more common MMC commands.

Commands and parameters are sent to the graphical LCD by first sending the
instruction type bit and then the data byte. Commands are specified as logic 1 and
parameters are represented by logic 0.

Command Type Instruction
Reset Command 0x01
Sleep Off Command 0x11
Display On Command 0x29
Interface Pixel Format Command 0x3A
Data Format 8 Bit Parameter 0x02

For a full list of commands and their recommended order see the init and sendByte
functions in the GFX_LCD_Functions.c file.

Description of C functions

Here is the list of functions with details of their operation, listings of their inputs and
expected responses.

SPI Bus and Graphical LCD Initialise Function

The Graphical LCD is interfaced via a protocol named SPI. This protocol uses 4 I/O
pins to represent data in, data out, data clock and chip select. The example Graphical
LCD functions use a software bit banging method to create the SPI bus. The bit
banging approach was used so that PICmicros that don’t have the hardware SPI
module can still access the E-Block. The digital I/O pins that are used to control the
Graphical LCD E-Block are defined in the GFX_LCD_Functions.h file.

#define LCD_PORT portc
#define LCD_TRIS trisc
#define RS 3
#define CS 2
#define SCLK 1
#define SDATA 0

To initialise the SPI bus and the Graphical LCD, use the Lcd_init function. This
function configures the direction of data on the I/O pins and then sends commands to
start up the Graphical LCD. The Lcd_init function is designed for use with 16F877A
and other pin compatible PICmicros. If using a PICmicro that uses different pins or
ports to access the Graphical LCD then the pin definitions in GFX_LCD_Functions.h
will need to be edited accordingly.

Example Lcd_init function call:
Lcd_init();

Clear Function

To start working with the Graphical LCD the first thing that needs to be done is to
clear the display so it is ready for any other graphical data. The display is cleared
using the function Lcd_clear.

Example Lcd_clear function call:
Lcd_clear();

Colours

In the example GFX_LCD_Functions.h file there is a list of predefined colours
available. To use the colour when calling a function you can simply pass the colour
name. E.g. (BLUE). These colours are all 8-bit and are created by a look up table
available in the GFX_LCD_Functions.c file. The display can also be set into a 16-bit
colour mode but this requires a lot more processing from the PICmicro, so it won’t be
covered in this programming strategy.

#define BLUE 0x03
#define YELLOW 0xFC
#define RED 0XE0
#define GREEN 0X1C
#define BLACK 0X00
#define WHITE 0XFF
#define BRIGHTGREEN 0X3D
#define DARKGREEN 0X14
#define DARKRED 0XA0
#define DARKBLUE 0X02
#define BRIGHTBLUE 0X1F
#define ORANGE 0XF8

Graphical LCD Pixels

The Graphical LCD displays have 132 by 132 pixels, which are indexed 0 – 131. You
can output a single pixel onto the display by using the Lcd_plot function.

Example Lcd_plot function call
Lcd_plot (x1, y1, Colour); //Outputs a colour pixel at location X1, Y1
Lcd_plot (35, 35, BLUE); //Outputs a blue pixel at location 35, 35

Drawing Lines

The Lcd_drawline function simply uses the Lcd_plot function to set in pixels between
coordinates X1, Y1 and X2, Y2.

Example Lcd_drwaline function call
Lcd_drawline (x1, y1, x2, y2, Colour); //Draws a coloured line X1, Y1 and X2, Y2
Lcd_drawline (0, 0, 131, 131, BLUE); //Draws a blue line top left to bottom right

Drawing Boxes

To draw a square or rectangle on the Graphical LCD you can use the Lcd_box
command. Similarly you can use this command to clear the LCD with a square box of
any colour. Set coordinates x1, y1 to be the top left hand corner and coordinates x2,
y2 to be the bottom right hand corner.

Example Lcd_box function call
Lcd_box (x1, y1, x2, y2, Colour); //Draws a coloured box from x1, y1 to x2, y2
Lcd_box (35, 35, 42, 50, BLACK); //Draws a black box from 35, 35 to 42, 50
Lcd_box (0, 0, 131, 131, BLUE); //Fills the entire screen with solid blue

Printing Text

The Graphical LCD does not include a alphanumeric lookup table so any text that is
displayed has to be sent at the pixel level. Luckily there is the Lcd_print function
included in the GFX_LCD_Functions.c file, which has pixel data for almost all of the
ASCII characters. This obviously takes up a large chunk of the program memory so if
you are struggling with fitting your program onto the PICmicro then some of the
characters can be deleted from the GFX_LCD_Functions.c file. However be aware
that removing data from the ASCII lookup table will cause problems in the Lcd_print
function if you are not careful. The Lcd_print function uses the pre stored lookup
table of ASCII characters to output a string at coordinates X1, Y1 in one of three font
sizes with a colour for the text and a colour for the background. The output
coordinates differ from the pixel coordinates used in the previous functions. The
coordinates used in the Lcd_print function signify column address and line number in
relation to the current font size.

The font sizes that are allowed are:
0 – Standard font 5 x 8 pixels
1 – Tall font 5 x 16 pixels
2 – Large font 10 x 16 pixels

Coordinates example: xa = x1 x (fontx + 1) ya = y1 x (fonty + 1)
x1 = 1, y1 = 2, Font = 0 : Actual top left co-ord of character : xa = 6, ya = 18
x1 = 1, y1 = 2, Font = 1 : Actual top left co-ord of character : xa = 6, ya = 34
x1 = 1, y1 = 2, Font = 2 : Actual top left co-ord of character : xa = 11, ya = 34

Example Lcd_print function call
Lcd_print (String, x1, y1, Font, F_Colour, B_Colour);
Lcd_print (“Hello”, 1, 1, 0, BLACK, WHITE);

Plotting Data

There is a sample program to demonstrate data plotting called Plot.fcf. The program
takes its input from analogue channel 0 and then draws a chart of the voltage against
time. The analogue signal is converted from 0 – 1024 to 0 –102 by diving the signal
by 10 so that the full input range will fit onto the display. The data point is plotted
using the Lcd_plot function. For a slightly clearer output, the line function could be
used to draw a line between the previous ADC value and the current ADC value.

Drawing Images

Displaying images is similar to printing text, as both of them have to be sent one pixel
at a time. This means that to output an image you first must have the image stored into
the memory of the PICmicro or a storage device that the PICmicro can interface.
Once the image is stored on or made available to the PICmicro, the Graphical LCD
has to be started in 16-bit colour mode to allow colours to look correct. You can also
change the image to use 8-bit colour but as a general rule most picture files will be at
least 16-bit by default.

There is a partial example for outputting an image onto the Graphical LCD. The
Lcd_drawimage function creates a window, 16 by 16 pixels wide and then fills it with
colour values 0x00 through to 0xFF. This function can easily be edited to create your
own image size and to send image data instead of a count value. The variables x1 and
y1 stand for the top left pixel of the image area.

Example of Lcd_drawimage function call
Lcd_drawimage(x1, y1);

Example Flowcode Programs

There is an example Flowcode program designed to test your MMC E-Block and
provide an example of how to utilize the MMC functions provided.

E-Blocks.fcf

A demonstration of the how to use text, lines and boxes with the Graphical LCD E-
Block.

Text.fcf

A demonstration of the different font sizes and text coordinates.

Plot.fcf

A demonstration of how to use the Graphical LCD to plot an analogue value.

	Contents of the Graphical LCD programmer support package
	Including the C functions in your program
	Graphical LCD Commands
	Description of C functions
	SPI Bus and Graphical LCD Initialise Function
	Graphical LCD Pixels
	Drawing Boxes
	E-Blocks.fcf

