
Page 1

© Matrix Multimedia 2011 MX008 - Introduction to Interrupts

Introduction to Interrupts

by Sean King, May 2009

Abstract
One feature of microcontrollers that is often overlooked is interrupt. Interrupts are sig-
nals that act directly on the hardware of the CPU within the microcontroller. This al-
lows the CPU to respond to an interrupt immediately. In this article Sean shows us
how Flowcode makes the task of enabling and using interrupts; intuitive and straight-
forward.

Requirements
Software:

• Any licence type of Flowcode v3 or v4 for any variant.

Hardware:

• No Hardware Requirements

Introduction

A very useful, but often avoided, feature available on almost all microcontrollers is the interrupt.

Interrupts are signals that act directly on the hardware of the CPU within the microcontroller. This al-
lows the CPU to respond to an interrupt immediately. Without interrupts, the main program would
need to continually check for a change in the signal(s) - referred to as 'Polling' - which could easily
allow these signal changes to be missed.

The CPU response to an interrupt is to:

- Stop execution of the main (background) program.
- Store the address of the next instruction of the main program to be executed.
- Store other system information to allow the current state to be restored.
- Jump, via the interrupt handling system of the CPU, to an Interrupt Service Routine (ISR).
- Execute the ISR code.
- Restore the stored system state.
- Jump back to the stored location in the main program.

When programming in assembler all these details must be considered
very carefully. Higher level languages make the task easier, and Flow-
code removes almost all the complexity.

Interrupt responses occur at the end of individual CPU instructions and
will probably cause the main program to jump from, and return to, the
middle of a Flowcode block.

Page 2

© Matrix Multimedia 2011 MX008 - Introduction to Interrupts

Interrupts are usually disabled on power-up and must be enabled by the main program

This Flowcode interrupt property panel allows an interrupt source to be selected, the interrupt en-
abled, and the jump destination (Flowcode macro) to be defined in a single operation.

Notice that the interrupt service
macro is never called from the
main program. It is executed inde-
pendently in response to the TMR0
interrupt.

The interrupt service routine can
use and modify variables that are
use by the main program and other
macros.

Page 3

© Matrix Multimedia 2011 MX008 - Introduction to Interrupts

Some of the peripheral devices capable of generating interrupts require additional configuration infor-
mation to allow the interrupts to be generated under specific conditions. Flowcode also provides easy
access to the range of configuration options offered by the target device

Interrupts common to most microcontrollers are:

- External edge or level triggered (specific individual I/O pins)
- External port change (specific combinations of I/O pins)
- Timer overflow (counter/timer peripheral has exceed its count limit and overflowed back to zero)
- UART receive (data received by UART peripheral - similar for I2C, SPI, etc.)
- UART transmit (UART peripheral transmit buffer empty - similar for I2C, SPI, etc.)
- ADC sample complete (the ADC peripheral has completed a conversion)

Example programs
The two example programs linked to this article illustrate the advantage of using a timer interrupt to
flash an LED at a constant and accurate rate, independent of the operation of the main program.

The first program Interrupt1.fcf compares the flash rate of two LEDs, one controlled from the main
program (A0) in a delay timed loop, the other from a timer interrupt (A1).
The two LEDs flash at approximately the same rate. After 20-30 flashes a small difference can be
detected.

The second program Interrupt2.fcf is identical to the first, but in this case additional LCD print com-
mands have been introduced into the main program. The effect on the flash rates can be seen al-
most immediately. The interrupt driven LED is still accurate, but the program controlled LED is com-
pletely out of phase within 20 flashes.
Also, the second program is required to detect a button press after an interval of 25 seconds. The
easiest way to do this is to suspend the program loop until the button is pressed. However, this also
stops the A0 LED from flashing. The program could be rearranged to allow the A0 LED to continue
flashing while waiting for the button press, but at the cost of significantly increased complexity.
If the main program contained more loops, branches, delays, and macro calls, the task of maintain-
ing a constant flash rate on the A0 LED would become almost impossible.

Page 4

© Matrix Multimedia 2011 MX008 - Introduction to Interrupts

Further reading

Below are some links to other resources and articles on related subjects, and technical documenta-
tion relating to the hardware used for this project...

Flowcode: http://www.matrixmultimedia.com/flowcode.php
Eblocks: http://www.matrixmultimedia.com/eblocks.php

Learning Centre: http://www.matrixmultimedia.com/lc_index.php
User Forums: http://www.matrixmultimedia.com/mmforums
Product Support: http://www.matrixmultimedia.com/sup_menu.php

Copyright © Matrix Multimedia Limited 2011

Flowcode, E-blocks, ECIO, MIAC and Locktronics are trademarks of Matrix Multimedia Limited.
PIC and PICmicro are registered trademarks of Arizona Microchip Inc.
AVR, ATMega and ATTiny are registered trademarks of the ATMEL corporation.
ARM is a registered trademark of ARM Ltd.

Although these example programs demonstrate the trivial process of flashing LEDs, the same princi-
pals can be applied to much more significant tasks - like reading and writing streamed data, or gener-
ating and detecting precisely timed events.

Interrupt service routine tips:
It is essential that the interrupt service routines are kept as short as possible. Most only require a
small amount of data to be transferred, or a simple calculation to be carried out.

Complex or potentially time consuming operations should be carried out in the main program. These
include:
- Calling most other component or user macros (LCD, ADC, Communications, etc.), except for basic
I/O operations
- While loops - unless the escape condition can be guaranteed within an acceptable period.
- Connection points - unless the flow of the program is understood for all possible conditions.
- Delays (other than very quick microsecond delays)

The fact that interrupt responses can occur at the end of any CPU instruction means that more com-
plex operations can be split by an interrupt. Multi-byte data transfers (int, string, or float) can be inter-
rupted in mid-execution, and, if the interrupt service routine shares these variables it is possible for
the values to be corrupted when read or written. There are techniques to avoid these problems, but
the simplest approach is to only share byte variables - as these are unaffected.

