
Page 1

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Front Cover

Page 2

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Introduction 3

Step-by-step guide to Flowcode 6 8

Project 1 - The Binary Clock 11

Project 2 - Egg Timer 25

Project 3 - Random Dice Generator 32

Contents

Page 3

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

The hardware:

 The ‘Power select’ jumper position determines the power source for the hardware, either:

 5V delivered by the USB connection;

 2.3V to 5.5V from an external power supply.

 Input devices, such as switches and sensors, and low power output devices, like LEDs,

can be soldered to the microcontroller terminals, labelled A0 to A4, C0 to C2, C6 and C7.

 Higher power devices, - motors and solenoids etc., can be soldered to the driver output

terminals, labelled M0 to M7, which can handle currents up to 500mA from an external

power supply.

 When inductive loads, such as motors and solenoids, are used, connecting the external

positive power rail to the ‘CL’ terminal, makes use of the on-board diode protection to safe-

guard the driver chip and microcontroller.

 The USB connector is used to connect to a computer to allow a program to be downloaded

to the microcontroller.

 Once programming is completed:

 the USB cable can be disconnected, unless it is used to deliver power to the

hardware;

 the Reset button is pressed to start the program running on the hardware.

The USB Project Board:

Introduction

Driver output
connections

PIC 18F24k50
microcontroller

Positive
power out

Power
select

External
power

ULN2803
Driver chip

USB
connector

General purpose
I/O

Status
LED

Reset
button

0V socket

Servo
connectors

Driver clamp
diode

Page 4

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

What will we cover in this curriculum pack?:

 In this curriculum we will cover the creation of 3 typical D&T based projects, based on the

Matrix USB Project Board. The examples will demonstrate how to implement techniques

used in curriculum ‘Design and Make 1’, and show you how Flowcode can be used with

3rd party programs to improve the design cycle.

 The 3 examples covered in this curriculum will vary in complexity slightly, and each docu-

mented example will provide less detail that the previous one, to allow you to learn for

yourself.

 In this curriculum pack we will demonstrate the creation of;

 A binary clock

 An egg timer

 A 3D random dice value generator (simulation only)

 Once you have read through this pack you should be able to recreate the examples shown

here, or hopefully you will be inspired to create your own projects.

 First, lets recap the layout of the USB Project Board and how we connect our devices to it. If

you’ve read through curriculum pack ‘Design & Make 1’, and are confident you may skip this

next section as it is a direct replica of what has been previously covered.

Page 5

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Introduction

Connecting the hardware:

The diagrams show examples of different hardware attached to the USB Project Board.

(There are other ways to do this!) To make them clearer, the USB Project Board is turned up-

side-down.

The Project Board offers a set of terminals, labelled A0 to A4, C0 to C2 and C6 and C7,

connected directly to the microcontroller ports. When these are configured as outputs, they

deliver electrical power to the attached devices, but the current is limited to a few milliamps.

Alternatively, devices can be attached to the output terminals of the driver chip,

the ULN 2803. These are labelled M0 to M7. Used in this way, the device must

be powered from an external power supply, so that that the driver output ‘sinks’, not

‘sources’ current. (These concepts are explained shortly.)

Switch units:

The diagram shows a switch unit, (a push switch and resistor), connected

to input a signal to port A, bit 3 of the microcontroller.

However, it could be connected to any of the microcontroller port bits.

It is connected to the ‘5V’ and ‘0V’ terminals, and so uses the USB Project

Board as its source of power.

Sensing subsystems:

Here, a temperature-sensing unit, (a thermistor and a variable resistor), is

connected to deliver an input signal to the system.

Although port A, bit 1 is used in the diagram, any microcontroller port bit

could be used instead.

The sensing subsystem uses the USB Project Board as a power supply.

LEDs:

LEDs can be connected to any microcontroller terminal configured as an output.

The current-limiting resistors (270 ohm) are found on the USB board itself.

As the microcontroller acts as the source of current, the LED must be

connected as shown, with its anode to the microcontroller terminal, and its

cathode to 0V.

Page 6

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Introduction

Connecting the hardware continued...:

LEDs again:

This is an alternative way to connect a LED:

 the LED is powered from an external power supply;

 the anode, , is connected to the positive terminal of the pow-

er supply;

 a resistor must be added to protect the LED;

 any ‘M’ terminal could be used;

 the transistor inside the ULN2803 chip acts as a switch between

the LED and 0V. When the program sends a logic 1 signal to the

 driver, the transistor ‘switches on’ and the LED lights.

Lamps and indicators:

 An external power supply is needed.

 Normal filament lamps are not polarised - it doesn’t matter which

way round they are connected.

 As before, any ‘M’ terminal could be used.

 Again, the transistor inside the ULN2803 chip acts as a switch.

Motors and solenoids:

 These are ‘inductive’ loads - when they switch off, a fleeting, but very high, reverse volt-

age can be generated, which could damage the driver chip and mi-

crocontroller. By using the ‘CL’ terminal as shown, the protective

diode inside the driver chip is used to ‘short-circuit’ this reverse volt-

age, and protect the chip.

 Notice how the external power supply is connected.

 These loads are not polarised - it doesn’t matter which way round

they are connected.

 As before, any ‘M’ terminal could be used.

 The transistor inside the ULN2803 chip again acts as a switch.

Page 7

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Introduction

Connecting the hardware continued...:

Identifying resistors:

The resistors on the USB Project Board itself are tiny, surface mounted devices.

‘Traditional’ resistors have two metal leads attached allowing for easy soldering to other

‘lead’ed components.

First of all, you must recognise which resistor to use.

Resistor Colour Code:

 Resistors often come with coloured bands across their body to show their resistance.

 Each colour represents a number, as shown in the table.

 To read the colour code, start from the opposite end to the gold or silver band:

The procedure:

 Write down the number shown by the first colour band, and then the second colour band.

 Add the number of 0’s shown in the third band (e.g. for red, add two 0’s.)

 The final band (gold, (5%) or silver (10%)) shows the tolerance (accuracy).

For example, the resistors in the photograph have a resistance of:

7 (purple) 5 (green) 000 (orange) = 75000 (or 75k) with a 5% tolerance.

Sourcing and sinking current:

Electronic devices work when an electric current flows through them. This current flows from a

source (often the positive terminal of a power supply) and flows around the circuit, before

returning to the sink, (usually the negative terminal of the power supply).

In the systems covered in this course, current flows from, and returns to, a power supply, with-

in the computer, (if we are using the USB Power Source option). From the component’s per-

spective, however, the current is sourced from the USB Project Board, and flows back to it (as

the sink).

For the LED, for example, the source is terminal ‘C1’, and the sink is 0V. For some of the

circuits, that is not the case. The source will be the ‘+V’ (5V) terminal, and the sink one of the

terminals on the ULN32003 driver chip, (marked with ‘M’ on the board.)

Using the worksheets:

The worksheets that follow show how to connect and then control the hardware, using

programs stored in the microcontroller

The Teacher Guide at the end of the module details all the steps needed to create these

programs and test the systems. Please refer to this when necessary.

Black Brown Red Orange Yellow Green Blue Purple Grey White

0 1 2 3 4 5 6 7 8 9

Page 8

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Step-by-step Guide to Flowcode 6 flowcharts:

1. Open Flowcode 6:

 When the Flowcode application starts, you are presented with four options:

 New project;

 Open a template;

 Launch Flowcode Help;

 Open an existing Flowcode project.

Click on ‘New project’.

2. Select the target microcontroller:

 The ‘Project Options’ screen opens, on the ‘Choose a Target’ tab.

 Click on ‘PIC’, and for ‘Family’ choose ‘Misc’.

 Select the ‘Matrix Project Board (18F24K50)’ option.

 Then click on ‘OK’

3. Add the icons:

 A new flowchart appears.

 (We will not use the ‘System Panel’ in these programs. It may appear when the flowchart

opens. If so, delete it by clicking on the ‘X’ in the top right-hand corner of the panel, or by

opening the ‘View’ menu and de-selecting ‘System Panel’.)

 Down the left-hand edge of the workspace is the strip of possible icons. Click and drag the

ones you want to make up the flowchart .

Introduction

Page 9

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Step-by-step Guide to the Worksheets - continued...:

4. Configure each icon:

 Double-click on each icon in turn, and use information like that given in the worksheets to

complete the configuration dialogue box.

 Click on ‘OK’ after completing each.

5. Open the Dashboard Panel:

 Open the ‘View’ menu, and click on the ‘Dashboard Panel’ option.

6. Add the components:

 Items such as switches are found in the ‘Inputs’ tool bar.

 The LEDs and motors are found in the ‘Outputs’ tool bar.

 Find the component you want and add it to the panel by:

 clicking on it and dragging it onto the Dashboard panel;

 or

 clicking on the down arrow to the left of its name, and selecting the ‘’Add to dashboard

panel’ option.

 Some components may be hidden, and require use of the ‘Search’ box.

 You can then ‘click-and-drag’ each component to its desired position.

 To zoom in or out, first click anywhere on the Dashboard panel.

 Then, hold down the ‘Ctrl’ key, and rotate the mouse wheel.

 This will cause the zoom level to change.

7. Configure properties of components:

 Move the cursor over the component, and right-click the mouse.

 The ‘Properties’ panel for the component appears.

 The important one for these worksheets is the

 ‘Connections’ property, shown on the right.

 Click on the text alongside the ‘Connection’ item,

 (here “Unconnected”) and a diagram of the

 chosen microcontroller chip appears.

 Select the pin to connect the component

 by:

 selecting the port and bit from the two

 drop-down lists;

or

 clicking on the pin on the image of the chip.

Introduction

Page 10

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Step-by-step Guide to the Worksheets - continued:

8. Simulate the program:

You can test whether your Flowcode program works by simulating it ‘on-screen’.

To simulate a flowchart:

 click the 'Run' button on the main toolbar (or press F5).

or

 select the 'Run' option from the 'Debug' menu;

Flowcode will go into simulation mode and will start to execute

the program in the flowchart. Simulations can be paused or stopped by selecting either the

'Pause' or 'Stop' options from the 'Debug' menu or selecting them from the simulation sec-

tion of the main toolbar.

Alternatively, you can simulate the flowchart step by step, using the 'Step Into' function by

pressing F8. You can also 'Step Over' icons by pressing Shift+F8. A red rectangle indicates

the next icon to be executed.

All these options can be accessed from the 'Debug' menu or by clicking the buttons on the

main toolbar.

9. Save the flowchart:

 Flowcharts must be saved before they can be downloaded to MIAC.

 To save the flowchart:

 select either the ‘Save’ or ‘Save As’ option from the ‘File’ menu;

 or

 click the button on the main toolbar.

10. Connect the USB Project Board to the PC:

 Connect the USB socket on the board to the USB port of a computer. This allows the

 program to be transferred from the computer to the PIC microcontroller on the board.

11. Compile the flowchart and transfer it to the chip:

 The next step is to compile the Flowcode program, (convert it into machine code,) and

then transfer it to the microcontroller.

 To do so:

 select the 'Compile to Chip' option from the 'Build' menu;

 or

 click the ‘Compile to Chip’ icon on the toolbar.

12. Test the program using the hardware:

 Press the ‘Reset’ switch on the USB Project Board.

 Now use the attached switches and LEDs etc. to confirm that the program does what you

want it to do.

Introduction

Page 11

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

The Binary Clock:

A binary clock is a method of representing the time of day on 3 sets of LEDs; Hours, Minutes

and Seconds. In order to understand how this works we must first understand counting with

binary notation.

In the world of digital electronics everything is as simple as a ‘1’ or a ‘0’. If we want to turn

something ON we set it to ‘1’, if we want to turn it OFF we set it to ‘0’. If all we ever wanted to

do with our microcontroller was turn a single LED on or off, this might satisfy what we need.

But what if we want a value that isn’t just on or off?

What if, for example, we want to count something like how many minutes have passed since

the day started. For this we need to be able to store more than just 1’s and 0’s...or do we?

Binary notation allows us to count up to any value using only 1 and 0, and here we will explain

how:

A binary number is constructed of 1’s and 0’s as seen below. This image actually represents a

value of 154 in ‘normal/ decimal numbers’. If that doesn’t make a lot of sense yet, don’t worry!

Let’s try look at our binary counting in a simpler way. Remember that we can turn an LED on

or off by using a 1 or 0? 1 turns it ON, 0 turns it OFF. So instead of a possibly daunting binary

number, we can swap all those 1’s and 0’s for a few LEDs which may help us understand.

We typically use either an analogue clock with hours, minutes and sec-

onds hands, or a digital clock using LCD displays to tell the time.

But did you know that there are other ways to display the time?

In this example we will walk you through the creation of a Binary Clock,

which uses only 12 LEDs to display the time of day.

Project 1
The Binary Clock

1 0 0 1 1 0 1 0

Page 12

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Project 1
The Binary Clock Cont...

 Now that we have seen that binary counting is easy, we will provide you with a few

examples. Calculate the value presented on the LEDs and write your answer next to it.

(a)

(e)

(d)

(c)

(b)

Answers:
(a) = 7
(b) = 32
(c) = 170
(d) = 73
(e) = 255
(f) = 6 and 5
Binary Notation cont...

We see from the picture on the previous page that we have created an image of 8 LEDs. Each

LED has a decimal value underneath it, but you will also notice these values are smallest on

the right hand side. In Binary, we count right to left! Counting in binary is as simple as adding

up a few values for all the LEDs that are turned ON. We will run through an example below,

after which we have provided a few examples for you to work through.

What value do we have here?
We simply count the LEDs that
are turned ON;
4 + 1 = 5

 Imagine you were making a clock, and needed to count to 60 minutes
and 12/24 hours. How many LEDs would you need for Minutes, and
how many for Hours?

Page 13

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Project 1
The Binary Clock Cont...

Counting with Binary and the LED Clock:

Now we understand how binary numbers are represented, we can start to see how the binary

clock may work. Below is an image of a binary clock showing a time. You can see we have

only 1 LED for seconds (in the final version this flashes for half a second ON and half a

second OFF). We also have 6 LEDs for the minutes, and 5 for hours. 6 LEDs allow us to count

to a value of 63; just enough for the maximum number of minutes we will count to. And 5 LEDs

allow us to count to 31 which is enough to count to 12/24 hours.

 What time does the clock below display?

Answer:
09:37

Creating our Binary Clock:

 Now we understand how our clock will display the time on our LEDs we can begin to

create the flowchart required for our clock. We will use the simulator within Flowcode to

check it is working as we desired, and then we will download our program to our

microcontroller to test it works in hardware.

 In Design & Make Electronic Products 1 (SE3844) we touched on creating variables to

save data, creating Macros to implement ‘modularity’ and the use of components from our

Flowcode toolbar. Therefore we will not go into detail in these areas in this curriculum

pack.

Page 14

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Seconds to Minutes to Hours:

One final step before we create our flowchart is to perform a bit of planning for our program.

We have chosen a clock as it’s fairly simple to create. Effectively, we need a counter which

increases by a value of ’1’ every second. We then create variables to save the value of

seconds, minutes and hours.

When our value of seconds reaches 60, we want to add ‘1’ to minutes and reset our seconds

to zero. When our minutes reaches 60 we want to add ‘1’ to hours and reset our minutes.

When hours reaches 12 or 24 (depending on whether you select a 12hr or 24hr clock) we want

all clock variables to reset, and a new day begins.

Creating our variables:

Since our value for seconds, minutes or hours will never be more than 60 we can use a

variable type ‘byte’ for each, as the maximum value a byte can hold is 255 (Think back to

binary counting!). We could also use an integer, which would allow us to count to 65535, but

we won’t ever need that much space. Using a large variable when it is not required is much

like using a really REALLY big piece of paper just to write one small word on it.

Binary Clock Version 1:

 Below is a quick sketch we made to show how simple our binary clock is! There’s a few

more details to add, but the sketched flowchart below shows the basic program.

 It’s good practise to draw programs before you make them to plan how they will work.

Add ‘1’ to seconds

Does Seconds = 60?

If ‘Yes’ Increase Minutes
& reset seconds

Does Minutes = 60?

If ‘Yes’ Increase Hourss
& reset Minutes

Does Hours = 24?

If ‘Yes’ Reset Hours

Project 1
The Binary Clock Cont...

Page 15

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Basic Flowchart:

Below is a Flowcode flowchart of our program:

Insert a 1 second delay

Each loop, add ‘1’ to
seconds

When seconds = 60,
increment minutes, and
reset seconds

When minutes = 60,
increment hours, and
reset minutes

When hours = 24, reset
hours

Set to loop ‘forever’ so our clock
will continue to run

Project 1
The Binary Clock Cont...

Page 16

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Basic Flowchart:

The flowchart in the previous page allows us to create a basic clock. However, we currently

don’t display any values on our LEDs, so it would be impossible for the end user to know what

time it is. To display the time we write to the ‘PORT’ of the microcontroller. The image below

shows how we display minutes and hours on our LEDs; it’s as simple as 2 icons!

By writing our value of ‘Minutes’ and ‘Hours’ to PORTB and PORTA respectively, we will

illuminate the appropriate LEDs to represent the time of the clock. The final section of code in

the main program is to flash the ‘seconds’ LED. We have placed this code at the start of the

flowchart, but it could equally be placed at the end.

 Note, we have slightly modified the original program from the previous page, by deleting

the one second delay and changing it to two half second delays. Therefore the light

flashes on for half a second, and off for half a second. Two images below demonstrate

how we have modified the original program to flash the LED.

Project 1
The Binary Clock Cont...

Page 17

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Additional code to set time:

Alongside telling the time, we also added some code to allow us to manually set the time.

Without the ability to set the time we would have to ensure we power up the clock at exactly

midnight, which is far from ideal. Also, unless a clock is perfectly accurate, which no clock is,

we will occasionally need to set the time manually.

In order to set the time we have used 2 switches. In Flowcode we placed the switches on our

simulation panel, and connected them to PORTB.6 and PortB.7. We configured the reading of

the switch by using an ‘Input’ icon. With an ‘If’ statement we have configured our flowchart so

that if switch B6 is pressed we call the Macro ‘SetClock’. The code within SetClock is found on

the following page.

 The code for entering the ‘SetClock’ mode is seen below, and lives in our ‘Main’

flowchart;

Input to check whether
switch B6 is pressed

If pressed, call macro
‘SetClock’

Project 1
The Binary Clock Cont...

Page 18

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Additional code to set time:

 Below is the ‘SetClock’ macro, used to manually set the time of the clock:

Read whole of PORTB
for switches B6 and B7

If B7 is pressed exit loop
and return to clock mode

Reset Seconds

Remember how we were counting in binary to light up
LEDs as outputs? Well, the same applies for reading
inputs.

If we read the
whole of PORTB,
the value of the
switch pressed
also has a deci-
mal value. As seen in the image above, if we press B6
we would expect the value of ‘64’ to be returned.

If B6 is pressed and
held, increment minutes
and hours

Project 1
The Binary Clock Cont...

Page 19

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Simulating our Binary Clock:

 Until now we have just added components to our simulation panel and arranged them so

they’re easy to view as seen below.

One more check that we grasp the binary clock….

Seconds

Minutes

Hours

From what we have learnt previously,
what time is the clock showing here in
our running simulation?

Answers:
05:16

Project 1
The Binary Clock Cont...

Page 20

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Importing 3D Models into Flowcode:

One feature of Flowcode is the ability to import 3D models from drawing packages. In this ex-

ample we used DesignSpark Mechanical to create a simple box shape, which we could laser

cut from 3mm clear acrylic. The DesignSpark Mechanical Assembly file can be seen below;

When we want to import a 3D object into Flowcode we must save it as an .OBJ file.

We import our 3D model using the little ‘teapot’ sym-

bol on the left hand menu bar of the System panel,

as indicated with the arrow.

Drag the little teapot onto the simulation panel and a

dialogue box will open allowing you to browse to the

3D design file you have created (.OBJ file)

Once you find your .OBJ file you will be presented

with the dialogue box which is seen on the following

page...

Import 3D
Objects

Project 1
The Binary Clock Cont...

Page 21

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Importing 3D Models into Flowcode cont...

This dialogue box is used to convert the .OBJ file into a file that Flowcode recognises. The

new file type will be a .MESH file. Keep all the default settings, unless you are an expert user!

Once your 3D model has been imported you should see it appear on the simulation panel. You

may need to move the object

around to get it in the right place

where you want it.

To move an item around the

simulation panel, click on it with

your left mouse button and drag

it to your desired position.

You may also need to rotate the

objects to align with the LEDs

and switches already on the sim-

ulation panel. Any object can be

rotated by modifying the param-

eters shown on the right side of

this image.

Leave all settings
as default unless
you are an ‘expert’
user

Click convert to
import model

Use these parameters
to rotate the objects on
the simulation panel.

Project 1
The Binary Clock Cont...

Page 22

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Finalising your 3D Model:

With our 3D model imported into our simulation panel, the final step is to configure our LEDs

and switches so they are placed inside the case. There are two methods of moving our objects

around the simulation panel. You may choose to use both methods:

1. Select the object by clicking on it,

and dragging it around the simu-

lation panel.

2. Select an object and modify its

‘world coordinates’ in the right

hand properties box.

First, highlight the switch B6 and ro-

tate it so it can be fitted in the side

panel of the binary clock case.

In the image to the right we have also

placed our bottom row of LEDs within

the model. Again, by selecting them

and dragging them into position.

To the left we can see our finished

clock. Here we see one of the main ad-

vantages of the simulator in Flowcode;

we were able to create a complete pro-

ject and we still have not created any

hardware. Now that we know our

flowchart program is correct, and that

our 3D model is also correct we can

build our clock and have confidence

that it will also work correctly.

Project 1
The Binary Clock Cont...

Page 23

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

The Final Step...let’s build!:

So, we have simulated our clock and imported our model and it all works as expected. But

now we need to create and build our clock. For this example we used the Matrix HP1110 Pro-

ject Board. A simple circuit schematic was created using DesignSpark PCB, and can be seen

below which shows the connections directly from the microcontroller. The outputs from the Mi-

crocontroller are clearly labelled on the HP1110 project board.

In this example we didn’t require the use of the motor driver chip as we are only powering low-

power outputs. Instead, we removed the ULN2803 motor driver chip and instead placed small

jumper wires between each pair of legs where the chip was on the project board. We powered

our clock via a USB cable. These days most phone chargers can use standard USB cables to

provide 5V, which our project board needs.

We created a veroboard circuit

which held our LEDs and resis-

tors, and also our pull down re-

sistors for our switches. We sol-

dered the LEDs directly in line

with the holes of the case.

Here is the final product, a sim-

ple binary clock, complete with

laser cut casing glued together.

The file is the same we created

in DesignSpark Mechanical.

Project 1
The Binary Clock Cont...

Page 24

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Expansion Projects;

The project built here relies on two half second delays creating a 1s delay for our ‘seconds’

counter. This is not an accurate method of time keeping. The half second delays in the micro-

controller might not be exactly half a second, they might be slightly more or slightly less.

Therefore, over time the clock will start to tell the incorrect time.

Also, we have not accounted for the time taken to execute all the other programming com-

mands in our clock; turning the LEDs on, checking if minutes = 60 etc. Lets say for example,

that each command takes 1µs (microsecond) to execute. (In reality, they don’t take this long,

and each type of command takes a different length of time, but we are learning the principle!)

1µs is 0.000001s, which doesn’t sound like a lot. However, if we have 10 commands in our

program then each time our program runs through it will take 10µs longer than we planned.

Over a period of 1 day there are 84 000 seconds. We can now calculate the inaccuracy of our

clock over a 1 day period:

Inaccuracy = No. of seconds x Extra Delay

Inaccuracy = 84 000 x 10µs = 0.864s

Therefore, each day we would be inaccurate by almost a complete second...not very accurate!

So how do we solve our inaccurate clock? There are at least two methods that Flowcode sup-

ports that you can investigate to make your clock more accurate:

 Use a Timer Interrupt within the microcontroller.

 A timer interrupt utilises an accurate counter within the microcontroller. Implement

an interrupt with the ‘INT’ programming icon.

 Use a Real Time Clock (RTC) Module.

 A RTC is a separate chip which can accurately tell the time. This time is then sent

from this chip to our microcontroller so we could update the LEDs.

The use of either of these methods is down to you! Experiment in Flowcode and see if you can

make your clock more accurate by adding either of the above 2 methods. Or perhaps there is

another method you could use?

Project 1
The Binary Clock - project extensions

Page 25

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

The Egg Timer

In this example we want to create a egg time to control our cooking time. We will need to

achieve 4 things in the project:

 Decide whether we want the eggs soft or hard boiled

 Start the timer

 Show the time remaining

 Show that our food

is ready

How will this work?

We will use 2 switches. The first

will select how long we cook for

and the second will start the

count down process.

We will use a number of LEDs to

show the time remaining and

then flash all LEDs to show that

the count down has completed.

Whatever you do in life, you cannot escape time. In the kitchen getting

exact timings help great chefs achieve consistent results. Here we will

make an Egg Time, but you could extend this project to include a general

timer and count down time compared to the way the binary clock counter

up

Since you have already covered the concept of managing time in Project 1, we will not cover

that here

Project 2
The Egg Timer

Page 26

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Choosing the right type of switch

In designing the egg time we decided to offer the option of soft boiled or hard boiled eggs.

Based upon on you like your eggs you can then allocate an amount of time to each type. For

our project we chose 4 minutes for soft and 8 minutes for hard.

Let us explore how to make the decision on whether we want soft or hard boiled eggs.

With the physical switch, there are several types of switches. You need to determine what

switch you want to use, or is best for your project, and the develop your solution around this.

The main 2 types of switches are commonly know as push-to-make and latching switches. Un-

fortunately just from looking at the switches it is hard to tell

Project 2
The Egg Timer cont...

Push to Make

A push to make switch allows electricity to

flow between its two contacts when held

in. When the button is released, the circuit

is broken. This type of switch is also

known as a Normally Open (NO) Switch.

(Examples: doorbell, computer case pow-

er switch, calculator buttons, individual

keys on a keyboard)

Latching or Rocker switch

A latching switch is a switch that maintains its

state after being activated. A push-to-make,

push-to-break switch would therefore be a

latching switch - each time you actuate it,

whichever state the switch is left in will persist

until the switch is actuated again. (Examples:

light switch, car controls)

In the images you can see 2 types of latching

switches. One is clearly this with the rocker

form of switch where as the other one latches

during operation and the amount the button

sticks out shows the state (sometime with LED

lights on when active).

Page 27

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

1. Setting the timer

For our egg time we decided to use a Push to Make switch

and 2 LEDs to show whether it is soft or hard boiled. You

could extend this to soft, medium and hard boiled by using

more variables and decision logic.

Project 2
The Egg Timer cont...

Read the state of the set
switch

Decide if the switch is
pressed

Based upon state, turn
on / off LEDs and set
timer start time (in
minutes)

Set to loop until the start button
is pressed

Change the binary state
of the variable (very effi-
cient code)

Check if start switch is
pressed. If so the con-
trol loop with exit

Page 28

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

2. Starting the timer

As you can see in the previous flowchart. We had a second switch that should be pressed to

start the timer.

Questions:

A. Work through the loop construct to work out what the variable was called for the deter-

mining whether the start switch was pressed

B. Consider what type of variable this is. The better the choice of variable type, the more

efficient your code

Project 2
The Egg Timer cont...

Page 29

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

3. Show the time remaining

Since we are only dealing with an egg timer and we decided that the highest time required was

8 minutes, we can use a binary notation on the pins of 1 port.

For our design we chose LEDs to display the binary notation, but we could have used a com-

ponent called a 7 segment display. You may want to investigate this and decide to use this

type of component if you want to do more than 8 minutes or have a variable timer / alarm.

There are 2 ways of dealing with this. A long winded way is to turn each LED on and then a

complex loop of decisions to work out which one to turn on. However, you can use mathemat-

ics to also calculate the total number and set the LEDs at the same time by addressing the

port.

Refresher on powers

2 to the power of 0 = 1

2 to the power of 1 = 2

2 to the power of 2 = 4

2 to the power of 3 = 8

2 to the power of 4 = 16

…

2 to the power of 7 = 128

See how the pattern follows the binary numbers you can see in Project 1.

With this knowledge, every time we reduce the timer by a

whole minute we can use this code.

The works by setting the value on the whole port but only 1

LED will come on

Project 2
The Egg Timer cont...

Page 30

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

4. Show that the food is ready

There are many ways an electronics device can get your attention. You could use a simple

buzzer, flashing lights or even use a small motor to provide vibration. You can even combine

these to make a multi-sense egg timer.

In our project, we chose to use the same count down LEDs and a flashing process.

Project 2
The Egg Timer cont...

Set a loop to run 10
times

Turn on the whole port

Wait 3/4s of a second

Turn off the whole port

Wait 3/4s of a second

Page 31

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

5. Building your device

For the Matrix egg timer we decided to design the body of it in solid works and then cut this out

on a laser cutter from various colours of Perspex. Some we made clear and generate a nice

edge lit form using high power LEDs soldered on Vera board.

By using an engraving technique on the clear Perspex the bring LED lights up each number in

turn. Here we have used 8 planes of Perspex with a small air gap between each panel to avoid

light leakage across multiple numbers.

Things to think about with the electronics…

 Pull down resistors for your switches

 Total LED power vs your supply (particular important for high powered LEDs)

 Voltage dividing to get the right voltage for your particular colour

 Anode and cathode orientation of each LED

 Power supply to your device (here I have just used USB power)

One last thing…

When your device is working, can you time a second batch of eggs without rebooting the micro

controller? Think how you need to ensure this is possible with your program code!

Project 2
The Egg Timer cont...

Page 32

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Random Dice Generator:

In this example we want to create a random dice generator. When a button is pressed, two

‘sets’ of LEDs will be used to display random numbers on the dice. We will only run through

how to get the numbers displayed on the LEDs. The rest is up to you to work out how it should

be done!

How will this work?

Each set of LEDs will be configured to match that of a

dice formation, as seen in this image. When we press

the switch we first want a sequence of random numbers

to flash on the dice, before a final value is set and

displayed.

Creating a random dice value;

Each time we press the button we want a random value to be presented on the dice. We

achieve this using the ‘random()’ function within Flowcode. We create a variable called Dice1

which is used to store our random values. To generate a random value we use a calculation

box;

Boggle, Monopoly, Snakes & Ladders or Backgammon, they all use dice.

In this project we will show you an overview of how to create an electronic

random dice generator.

Since this is Project 3, we will show you in far less detail than previous pro-

jects and we will not show you how to create the device in hardware. But

use it to inspire your own projects.

Project 3
Random Dice Generator

Page 33

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

With our calculation box on our flowchart we can use the random() function to generate our

number.

We first create a random number. The random() function will create a random value between 0

-255 (an 8-bit number). We save it to the variable ‘Random1’.

However, this is no use to us as a dice can only display values 1-6. Therefore we need a sec-

ond function to take our random number and limit it to a value no greater than 6. We achieve

this using the Modulo (MOD) function. We will provide one example first, then you can work

through the rest. We want to calculate X = 7 MOD 2.

Therefore, we want to divide 7 by the modulus (here the value 2) and see what value remains.

We don’t care how many times 7 can be divided by 2, but only the remainder value. In this ex-

ample, the remainder after 7 is divided by 2 is ‘1’. Think about this, three 2’s make 6, therefore

the difference between 7 and 6 is 1. Try work out some of the other examples below;

(a) X = 9 MOD 2 __

 __

(b) X = 50 MOD 8 __

 __

(c) X = 37 MOD 4 __

 __

(d) X = 251 MOD 7 __

 __

Answers:
(a) = 1
(b) = 2
(c) = 1
(d) = 6

Page 34

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

Now that we can create a random number we are almost there with our dice. In this section we

will show you how we displayed our generated value on the LEDs of the dice. In ‘Project 1 -

The Binary Clock’ we looked at writing a decimal value between 0-255 on 8 LEDs. We learnt

that we can make any of the LEDs illuminate depending on the value we send between 0-255.

In this example, we only use 7 LEDs, but the principle is the same. We write a value to the

LEDs, but this time the aim is to create a pattern to display a value between 1-6.

In the example below we want to display the value ‘3’, a diagonal line across the face of the

dice. We placed our LEDs to replicate that of a dice pattern, as seen in the right of the image.

So, from the example below what value should we write to our LEDs? (You will see that we

have also aligned our LEDs in a line to make it a little easier to read the value).

So, if we want to display a ‘3’, we must write the value of 97 to the LEDs. Work through the

examples below to calculate the values needed to display the other numbers on the dice:

(Answers are over the page)

Answer: 97

Page 35

Design and Make

2

Copyright 2015 Matrix Technology Solutions Limited

On the previous page you should have worked out what values are required to switch on the

correct pattern of LEDs to display the values 1-6. We can now check whether your answers

were correct.

We used a ‘Switch’ statement to display our dice values. A switch statement is like a group of

‘if’ statements all combined into one programming function. In the example below we have

configured it so that only when a value 1-6 is passed it will execute some code. In this case

the only code that is executed is updating which LEDs are switched on, by writing a value to

PORTA. We want our correct pattern of LEDs to illuminate, depending on the value sent.

On the previous page our example dice value was 3 which equated to the number 97 to be

displayed correctly. Check your other values to see whether they match those by studying the

switch statement below:

Now we can display dice patterns on a series of LEDs the rest of the project is over to you.

Consider how you can improve the dice functionality.

 A Switch should be added so that the user can decide when to ‘roll the dice’.

 Maybe you can also add a second dice?

 Add some code which flashes the dice in a random pattern to simulate a dice roll, then

after a few seconds finishes on a value.

 Add a buzzer?

The choice is yours!

Answers:
(1) = 64
(2) = 33
(3) = 97
(4) = 45
(5) = 109
(6) = 63

