

Page 2 Copyright © 2023 Matrix Technology Solution Limited

Contents

Introduction
Getting started 3
Take the Tour - Check out my body parts 4
Language Neutral - Application Program Interface 8
Pseudo-code - A simple programming aid 10

Hardware setup
Windows PC 11
Android Tablet / Phone 13
Raspberry Pi and Linux 15

Controlling the Robot
Using Flowcode 17
Using App Inventor 19
Using C++ / C# / VB 22
Using Python 24
Using LabView 26
Using Scratch 27

Worksheets
Worksheet 1 - Robo makes its first move 29
Worksheet 2 - Watch out - those lights are animated 31
Worksheet 3 - Switch it on, switch it off 33
Worksheet 4 - Hello world 35
Worksheet 5 - How bright is that light? 38
Worksheet 6 - Searching for the light 40
Worksheet 7 - Follow my line 42
Worksheet 8 - Push buttons do the work 45
Worksheet 9 - Status panel 47
Worksheet 10 - Tilt and turn (using a mobile device) 49
Worksheet 11 - Lefty can navigate through a maze 51
Worksheet 12 - Play that tune 53
Worksheet 13 - Robo-DJ 55
Worksheet 14 - Mobile bug 57
Worksheet 15 - Robo-Pop 60
Taking it further - Challenges 16-20 62

Appendix
API Reference Chart 63
Microcontroller Pin Connections 67
Musical Note Frequencies 68
Setting the Robot’s Name 69
Reloading the AllCode API Firmware 70

Page 3 Copyright © 2023 Matrix Technology Solution Limited

Introduction
Getting started

Where do you start?
Congratulations. You now have a state-of-the-art Formula
AllCode robot that can perform all sorts of interesting
manoeuvres, navigate a maze, dance, make sounds, play
music, record and playback audio. The list goes on and on. As
there are so many things you can do with the robot, the first
problem you might encounter is working out the best place to
start.

This instructional guide has been prepared to help you get up
the learning curve as quickly as possible so you can enjoy
making the robot do the things you want it to do.

Fun
One of the key elements of this instructional guide is to make sure you have some fun.
Learning or acquiring a new skill is always much more rewarding when the task has a lot
of fun associated with it. The worksheets in this guide book have been developed to give
you hours of fun and enjoyment while you learn the basics of robotics. Getting the robot to
make its first moves, then to utter its first sounds might start off as a challenge - but should
end up as pure delight and personal satisfaction when you achieve it.

Creativity
Although you can use the robot on your own, it’s much more fun when you team up with
one or more of your friends, as you will find that each of you have ideas and suggestions
of things to try out. You will be surprised how a simple idea can be transformed by a little
piece of collective creativity or imagination into something truly amazing!

Building Blocks
The worksheets in this guide are structured so they start off tackling the easy things like
operating the LEDs or displaying a message on the LCD panel, then move on to more
complicated tasks like navigating a maze or following a path. Each worksheet has a
coloured bar that indicates the suggested “Skill Level” - easy, intermediate or advanced.

The exercises on some of the worksheets are “Standalone” which means you can dive in
and try them out in any order you like. Others are “Linked” and use a building block
approach that incorporates work you would have encountered in a previous activity. Again
this is indicated by a coloured bar at the top of the worksheet.

Planning your work
It’s a good idea to start off by making a plan of what you want to achieve each time you
use the robot. This will ensure that you are focused and productive with your time.

Page 4 Copyright © 2023 Matrix Technology Solution Limited

Take the Tour
Check out my body parts

This section explores the various parts of the robot and
explains the basic operation of all the sensors and control
systems.

Apart from the two motors that can be used to navigate
the robot through a maze, there are light and distance
sensors as well as sound recording equipment that will
give you hours of fun.

You will probably want to revisit this page as you read this
Guide.

Key parts of the robot
The block diagram below shows the important parts of the Formula AllCode robot.

Page 5 Copyright © 2023 Matrix Technology Solution Limited

Take the Tour
Check out my body parts

Digital Signal Controller
At the heart of the robot is a Digital Signal Controller (dsPIC®)
manufactured by Microchip Technology Inc. This high performance
device
offers motor control (PWM), advanced analog features, a number of
communication interfaces including audio capture, processing and
playback as well as a considerable number of high speed counter/
timers.

Motors
The robot has two powerful permanent magnet motors, coupled via reduction gearboxes
(used to increase the torque) that drive rubber wheels (to provide grip on smooth
surfaces). A highly efficient electronic control system ensures the power drain on the
battery is as small as possible. This means you can have a lot of fun with the robot before
the lithium-ion battery needs to be recharged. The two motors can be driven independently
to give the robot the ability to pivot on its own axis and escape from
tight or tricky situations.

Feedback encoders in the motors allows the dsPIC® to “know”
exactly how far each one has turned - which allows the robot to move
forward/backward a given distance or turn at a given angle.

LCD panel
Situated in the centre of the robot is a graphical LCD panel that can
be used to show messages and/or simple graphical shapes.

LEDs
Across the front edge of the robot is a row of green
LEDs that can be driven by commands from your
program.

Light sensor
Positioned along the front edge of the robot is a light
sensor. It can be used to measure and report back to
your program the amount of light falling on the robot.

If this is linked to controlling the motors it enables the
robot to find or avoid a light source.

Page 6 Copyright © 2023 Matrix Technology Solution Limited

Take the Tour
Check out my body parts

Distance sensors
Around the four sides and four corners of the robot are mounted
infrared (IR) transmitters and receivers that can measure and report
back to your program the distance from the robot to a possible
obstacle. Each of the eight IR transmitters can be instructed to send
out a beam of infrared light. If the beam encounters an obstacle it is
reflected back to the robot where it is detected by the IR receiver.

Microphone, microSD card slot
and miniature speaker
These three items work together to enable
sounds and voices to be captured (using the
microphone), stored on the microSD card and
played back using the robot’s on-board speaker.

Pre-recorded sounds and music, previously
written onto the card, can also be played.

Notes generated by the robot can be played and linked together to
make musical sounds.

Micro USB connector
This connector can perform two functions. It can be used to recharge the robot’s lithium
battery by plugging in a charger like the one you probably use with your mobile phone. It
can also be connected to a computer/laptop/tablet (with a USB socket) to download and
execute programs you have written.

On-board Bluetooth module
This is a small daughter board mounted on the rear edge of the
robot. It provides another method for you to download programs
to the robot.

One of its main uses is to enable you to connect wirelessly to the
robot and then interact with the on-board sensors, control the
motors, write messages to the LCD, operate the LEDs, and
playback sounds, etc.

Page 7 Copyright © 2023 Matrix Technology Solution Limited

Take the Tour
Check out my body parts

Push buttons
There are three push buttons on the robot labelled SW1, SW2 and SW3. The first two
buttons can be sampled by your computer program to trigger a user-defined task. SW3
performs a hardware reset, to restart your program, when it is pressed.

Slider switch
This is labelled as SW4 and is the robot’s main
On/Off switch.

Line detectors
If you turn the robot over you will see two line detectors. Each unit sends out a beam of
light. Depending on the colour and what sort of surface (i.e. reflective or non-reflective) is
underneath the robot determines how much of the beam returns.

The line detectors are primarily used to get the robot to
follow a path drawn on a piece of paper or printed on a
mat.

This is achieved by writing a program to detect when the
robot strays off the edge of the path, adjusting the speed
of the two motors to bring the robot back on track.

Page 8 Copyright © 2023 Matrix Technology Solution Limited

Language Neutral
Application Program Interface

Language independent, agnostic, language neutral,
platform independent - what do these terms mean?

Basically it means you are not forced to use a certain
programming language or platform to control the robot.

This is because Formula AllCode offers an Application
Program Interface (API) that enables you to interact with
the robot using a set of simple routines or protocols.

If you have not heard of APIs then this section will help
you understand how to make use of it with the robot.

One way to explain this is to think about how a TV remote controller works. Although
modern televisions have touch buttons or soft-touch areas along the edges of the screen,
most people find it more convenient to use a remote controller to turn the TV On/Off,
change a channel, adjust the volume or brightness settings, etc.

When you think about it, a TV remote is a very
simple device consisting of a keypad and an
infrared light beam. When a button is pressed its
value is encoded and used to send a binary
pattern, via the infrared beam, to the TV. The TV
decodes the received pattern and carries out the
required function.

If for some reason the TV remote failed it would
be an easy task to replace it with a new one, or
even purchase a universal remote (if you had a number of devices to control).

There are Apps that can be used to turn smart phones into a TV remote controller and
other hardware is available that can send out TV remote codes. The only critical part is to
send the correct pattern (i.e. command) when it is required.

So you could say the TV has an API that allows a remote controller (whatever form it might
take) to control the intelligence or electronic control systems within the television.

The API, as used on the Formula AllCode Robot, offers the same platform and language
independence as the TV example described above. The difference is the transmission
medium for the robot is Bluetooth rather than an infrared beam. This means providing you
have a Bluetooth facility on your system, you have the freedom to use your favourite
platform and programming language to interact with the robot.

As an example, you might choose to use a Bluetooth-enabled mobile phone to control the
robot. Alternatively, you could Bluetooth-enable a PC/Mac/Raspberry Pi® or a Matrix
Multiprogrammer board by fitting a low-cost Bluetooth module to create a simple control
system.

Page 9 Copyright © 2023 Matrix Technology Solution Limited

Language Neutral
Application Program Interface

As the API reacts to a simple text-based protocol (as shown below) it means you have the
freedom to use formal programming languages like C, C#, C++ or Python, or graphical or
icon-based languages like Flowcode, App Inventor or LabView.

The other thing to note about the API is that some commands are bi-directional. This
means that a command sent to the robot could result in a value being returned. A good
example of this are the infrared distance sensors fitted to the robot. An API command
could be sent to a specified sensor (that effectively interrogates it) causing it to return a
numerical value of the distance between the robot and an obstacle.

Shown below is the general format for the robot’s API.

API command ...Parameters...

Text string Numeric values and/or text string

Every command starts off with a text string that identifies what the robot should do. This
may be followed by one or more parameters. Depending on what you are trying to do with
the robot these parameters can be numerical or textual or a mixture of both.

For example to send a value to the eight LEDs on the front of the robot you would use:

LEDWrite <value>

As the LEDs are grouped together and form an 8-bit row, they can be driven by sending a
binary number to them. So the parameter <value> can take a value between 0 and 255.

It should be noted that the API commands for a particular language might have some subtle
differences. For example, Python will use something like "fa.LEDWrite(20)" whereas C#
would look like "FA_DLL.FA_LEDWrite(20);" and for App Inventor, Flowcode and LabView
the appropriate icon would be selected.

Here’s another example that shows how to control the motors on the robot.

Forward <distance>

The parameter labelled <distance> can take a value between 1 to 1000 to define the
distance the robot will travel (in millimetres) in a straight line.

If you wanted to independently control the two motors you could use this command.

Setmotors <left> <right>

The parameters <left> and <right> can take a value from -100 to 100 to define the speed
and direction of each motor, allowing the robot to move in various directions.

The API is listed in the appendix and worksheets in this Guide will explain in more detail.

Page 10 Copyright © 2023 Matrix Technology Solution Limited

Pseudo-code
A simple programming aid

Most of the examples that appear in this Instructional Guide are written with pseudo-code.
You may question why we didn’t use flowcharts or one of the many programming languages that can be
used with the Formula AllCode Robot.

The answer is twofold. Firstly, this Guide would be huge if all the examples were written in
every language the robot supported, and only certain parts would be applicable to you.

Secondly, if you use flowcharts there is nothing to prevent you creating structures that do
not easily map onto the three main control constructs (e.g. sequence, decision and
iteration) that formal programming languages support. Here’s an example of a program,
written in pseudo-code, using all three constructs for the robot.

light_threshold = 500

sound_threshold = 100

DO

 sound_level = ReadMic

UNTIL sound_level >= sound_threshold

CALL play_some_dance_music

LOOP-FOREVER

 illumination = ReadLight

 IF illumination >

 light_threshold THEN

 Forwards 100

 ELSE

 LEDWrite 255

 END-IF

 DELAY 200ms

END-LOOP

Sequence

Iteration

Subroutine

A sequence is a group of one or more statements that follow each other. There are two
examples of iteration in this piece of pseudo-code: the first one repeats until a certain
event occurs and the second one repeats forever. A decision, sometimes called a branch,
can take one of two paths depending on the answer to a question.

Also shown in this example is a CALL that jumps to a subroutine. This is used to make the
code easier to read by hiding some of the unnecessary detail.

The items highlighted in dark blue are API calls that allow you to interact with the robot.
The name of these calls will map across to the set of macros available in Flowcode, App
Inventor, Python and other languages supported by the Formula AllCode Robot.

Using pseudo-code allows you to take the first step of putting your ideas into practice in a
structured way without getting tripped up by the syntax of a formal programming language.
Once you have expressed your ideas, using pseudo-code, you can move on and write the
actual program using your chosen programming language, a fairly simple coding task.

Iteration

Decision

Page 11 Copyright © 2023 Matrix Technology Solution Limited

Hardware setup
Windows PC

A lot of Windows devices, especially laptops and
tablets, have inbuilt Bluetooth functionality. If your
PC does not, you will need to use a Bluetooth 2
USB dongle.

Different versions of the Windows operating
system use slightly different ways of connecting
Bluetooth devices, but they all follow the same
steps.

You will need to perform this process just once as
Windows will remember which devices are paired.

1) Turn on Bluetooth
Often, Bluetooth is enabled by default and you can usually ignore this step. However if it is
not, it can be enabled in the Windows settings and/or control panel. Very occasionally,
Bluetooth needs to be switched on using a special switch or function-key. Please consult
your PC or Windows help for more information.

2) Pair the robot
First switch on the robot - its name will be displayed in the top-left of its screen.

Again, pairing works slightly differently on the various
Windows versions and so it is difficult to give specific
instructions here. The Windows help and website will
have guides explain how.

When pairing, you will be presented with a screen or
list of available Bluetooth devices.
Select the device with the name of your robot and click Next or Pair.

You will be asked to enter the pairing code. The Formula AllCode robot uses the default
code of 1234, although this can be changed to another code if you want to ensure no-one
else can pair with your robot.

Once the code has been entered, Windows will confirm that it has paired with the robot.

Page 12 Copyright © 2023 Matrix Technology Solution Limited

Hardware setup
Windows PC

3) Determine the COM port number
You should get a popup balloon on the task bar saying device is ready to use. If you click
this before it fades away then you can find out the COM port assigned to the robot.

You use this COM port number when
communicating with the Formula AllCode robot
and this COM port number will stay the same as
long as you do not remove or unpair the robot
from Windows.

If you did not see the COM port when the robot
was paired, you can find it in the Bluetooth
Settings window, as shown on the right.

There are two COM ports listed for each robot.
Make sure you always use the “outgoing” port
number.

This window can be a bit hard to find on some
versions of Windows. For example, on Windows 10
you can find this via the “More Bluetooth options”
link on the Bluetooth settings screen.

Luckily, there is a guaranteed way of opening this
window in all versions of Windows from version 7. Open the “Run…” window by holding the
Windows key and pressing R, then
type (or copy and paste) the following command into the box and press “OK”:
rundll32.exe shell32.dll,Control_RunDLL bthprops.cpl,,2

Now you have paired the robot and determined the COM port number, you can use any of
the many programming languages available on Windows to control the Formula AllCode
robot.

Page 13 Copyright © 2023 Matrix Technology Solution Limited

Hardware setup
Android tablet / phone

Android phones and tablets, when used with intuitive
programming software such as App Inventor, provide a
motivating platform for controlling the Formula AllCode
robot.

These devices almost always include Bluetooth built-in.

As with other devices, the Formula AllCode robot must
be paired with the phone or tablet before it can be
used.

If your Phone or Tablet already has Bluetooth functionality built in then you may first have
to enable it by clicking on Settings -> Connections.

Once Bluetooth is enabled you need to pair the Formula AllCode robot to your phone to
allow Apps to see the device.

Begin by clicking the Bluetooth option in Settings -> Connections

Next make sure your robot is switched on click the Scan button on your Android device to
check for new Bluetooth devices. Note you may have to scroll down to see the results from
the scan.

The name of the Formula AllCode appears on the top left of the LCD to let you know the
Bluetooth name of the robot you want to connect to.

Bluetooth Switched Off

Bluetooth Switched On

Page 14 Copyright © 2023 Matrix Technology Solution Limited

Hardware setup
Android tablet / phone

When the device name has appeared click the
device name and you will be asked to
enter the pair key.

The default key is 1234.

Once the device is paired it will be listed along with any other paired Bluetooth devices you
might have and is ready to be used with any Formula AllCode apps you download or
create.

Please note: This may be subtly different on your Android device. For specifics on your

Phone or Tablet please look up how to pair Bluetooth devices for your specific device.

Page 15 Copyright © 2023 Matrix Technology Solution Limited

Hardware setup
Raspberry Pi and Linux

The Raspberry Pi is a popular single-board computer.

The most common operating system used on the
Raspberry Pi is a variety of Linux called Raspbian.

The instructions here for pairing the Formula AllCode
robot are not limited to a Raspberry Pi and should
apply to most Linux-based computers.

Setting up Bluetooth is relatively easy on a Raspberry Pi and can be done in a number of
ways. The following steps are perhaps a more complex way of setting it up, but it should
work in all situations. Note the Pi needs a Bluetooth USB dongle.

Step 1 – Get your Bluetooth settings
Open a command-line terminal and type the command “hciconfig”. This will bring up a list
of Bluetooth devices available on your RPi. The important thing to note is the identifier of
the Bluetooth module – in my case it is “hci0”:

Step 2 – Detect the Formula AllCode
Switch on the robot and then type “hcitool scan”. When I did this, it showed two devices.
Mine was the latter (“API_B”) and you will need to take note of the 6 pairs of hexadecimal
numbers that are the MAC address, a unique identifier to the robot – in my case,
“00:BA:55:23:1C:20”.

Step 3 – Pair the robot with
the RPi
To pair, you can use the “bluez-
simple-agent” command
using the “hci0” and MAC
address found in the previous steps.

Page 16 Copyright © 2023 Matrix Technology Solution Limited

Hardware setup
Raspberry Pi and Linux

Step 4 – Making the change permanent
The final step is to make this pairing happen automatically when the RPi is next used.
This can be done by editing the “/etc/bluetooth/rfcomm.conf” file (e.g. using nano) and
entering the following code. Again, you will need to ensure you use the correct MAC
address that was found earlier.

You will need to add a section to this rfcomm.conf file similar to the following:

rfcomm1 {

Automatically bind the device at startup

bind yes;

Bluetooth address of the device

device 00:BA:55:23:1C:20;

RFCOMM channel for the connection

channel 1;

Description of the connection

comment "Formula AllCode";

}

The three red bits of text can be customised - you will use the MAC address found in step
2, and can use and name in the “comment” field.

If you have more than one robot, you can add multiple sections - just name each one
“rfcomm1”, “rfcomm2”, etc.

Step 5 – Testing the connection
Once you are paired, you can test the connection by using the following in the commandline
terminal:

echo "PlayNote 100,100\n" > /dev/rfcomm1

If all goes well, you should here a beep from the Formula AllCode.

If this does not work and you get “permission denied” message, you may need to add
yourself to the “dialout” group. To see if this is the case, use the “id” command with your
username as a parameter to check which groups you belong to. If the group “dialout” is
not listed, you can add yourself to the group using the following command (remember to
substitute your username in place of “username”!):

sudo usermod -a -G dialout username

You will then need to logout and log back in to see this change, and the “PlayNote”

Page 17 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using Flowcode

This section explains how to use Flowcode to control the robot.

As you probably know, Flowcode provides component macros for all complex devices like CAN
bus, ZigBee, and the robot. This means you can start learning about robotics and how to control
the Formula AllCode Robot very quickly and very easily.

There are programs on the Matrix website to inspire and help you.

This section assumes you are familiar with the basics of using Flowcode. There are two
ways of using Flowcode to control the Formula AllCode robot. 1) re-programming the firmware on
the robot and 2) using the in-built API functionality.

In Flowcode 6.1.3 and later there are two components
available from the mechatronics menu to allow you to
select the desired mode of operation, as shown on the
right.

Downloading code to the robot
The Formula AllCode component allows us to
create code which will run on the
microcontroller on-board the Formula
AllCode.

The component comes with a fully
operational simulation allowing us to create
programs to follow lines or solve mazes
without having to keep compiling and
downloading code
to the robot.

To reduce the number of macro functions
within the Formula AllCode component the

code
for driving the Servo motor outputs, SD card and Accelerometer have not been included.
There are separate components available which allow you to do this.

Note: Downloading code using this component will remove the API functionality from the
robot. Instructions on restoring the API to get the robot back to the original factory

Page 18 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot

Direct control from Flowcode using the
API
The other component (“Formula AllCode
API”) allows us to control a Formula
AllCode robot from within Flowcode
without downloading.

Note that the Component Macro
functions appear in the Simulation tab
rather than the usual components tab.
This highlights the fact that the code is
not downloadable onto
Formula AllCode.

Here we control the value on the LEDs by
reading a value from a simulated
analogue
slide potentiometer. The console now
provides a list of the API function calls,
the parameters and the return values.

The selected communications port is automatically opened when you start the simulation.
The speed of the motors is automatically set to 0 before closing the port when you end the
simulation.

By also dragging a Formula AllCode component onto the panel you can also control the
simulated robot via
the API component
macros.

Page 19 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using App Inventor Robotics Course

Instructional Guide

This section explains how to get started with the coding
language called App Inventor that will enable you to use
an Android device to control the robot.

These QR codes and hyperlinks will help speed-up your
installation, so you can start having some
fun coding.

App Inventor Template

App Inventor
App Inventor is a freely available graphical programming language hosted on one of the
cloud-computing and storage systems at Massachusetts Institute of Technology (MIT) in
the United States. All you need to get started developing apps for an Android mobile
phone or tablet is a web browser and a Google account. App Inventor uses colour-coded
icons, shaped like jigsaw-puzzle pieces, to create an app by joining the pieces together.
The system prevents you making mistakes by ensuring only certain shapes with the same
colour scheme can be joined together. This technique encourages people of all ages to
enjoy ‘coding’ and develop their confidence and ability in computer programming.

Setting up App Inventor
The key items you need are a desktop or laptop (running a modern browser like Chrome
or Firefox) and a phone or tablet running the Android operating system. You will also need
a QR reader so it would be a good idea at this stage to download one on to your mobile.

Just follow these simple steps to get yourself up and running really quickly.

1. Set up a Google account (if you haven’t already got one).
2. Go to the App Inventor website by scanning the QR code or clicking the hyperlink above
and then login using your Google account.
3. Follow the online instructions, including installing the “MIT AI2 Companion App” onto
your Android device.
4. You will need to link the web-based App Inventor with your phone or tablet. To do this,
select ‘AI Companion’ from the ‘Connect’ menu in App Inventor.
5. Download the Formula AllCode template onto your computer by scanning the QR code
or clicking the hyperlink. Remember where you saved them on your desktop/laptop.

http://ai2.appinventor.mit.edu/
http://www.matrixtsl.com/resources/files/software/examples/FA_AI_FormulaAllcodeMacros.zip

Page 20 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using App Inventor Robotics Course

Instructional Guide

Your first program
Each time you want to start a new project, follow these steps:

1. Load the template file by clicking ‘My Projects’ from the
App Inventor menu and selecting ‘FA_Template’ project.

2. Save this template as a new file by selecting ‘Save project
as…’ from the ‘Projects’ menu and then entering an
appropriate name for your project.

3. Click ‘Screen1’ from the ‘Components’ pane and set the ‘AppName’ and ‘Title’ in the ‘Properties’
pane to something suitable.

4. Drag a button from the User Interface panel
onto the Viewer screen and alter its text to read
“Spin”. Also rename the button so it reads
“btnSpin”. Do the same again to create another
button called “Stop” with the name “btnStop”.

5. Switch to ‘Blocks’ mode and click on the
‘btnSpin’ object - a list of icons will appear. Drag
the “when btnSpin.Click” icon onto your program.

Do the same again but this time click on the
‘btnStop’ object.

Page 21 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using App Inventor

6. Click ‘Procedures’ from the ‘Built-in’ list and drag the “call SetMotors” icon into the middle of
your “when btnSpin.Click” and “when btnStop.Click” icons. Add two literal values
from ‘Math’ as the Left and Right parameters to the SetMotors code blocks.

Your two blocks should look like this:

7. Now you should build the project. Select “App (provide QR code for .apk)” from the
“Build’ menu. Once this is complete, run the “MIT AI2 Companion” app and then scan the
QR code into your Android device using the “Scan QR Code” button.

Note:
If you visit the App Inventor website you will find instructions about other methods that are
available for transferring your program to your Android device.

8. You can now run your program on your Android device. Click “Connect to device” and
select the Formula AllCode Robot from the list. Clicking the “Spin” button should make the
robot spin, and “Stop” should make it stop.

You may have noticed a number of icons at the top of the screen in App Inventor. These
define the procedures for communicating with the Formula AllCode Robot and some
standard functions to allow the Bluetooth link to be set-up.

The tan coloured icons represent events such as when a button is clicked, when a timer
triggers or when an error occurs.

The mauve coloured icons relate to a set of procedures or subroutines that have been
designed to perform certain tasks for you. You should not alter these unless you are an
experienced App Inventor user.

Page 22 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using C++ / C# / VB

A common programming tool is Visual Studio from Microsoft.

In this section we introduce various methods to communicate
with the Formula AllCode robot using some of the more
widely known programming languages such as C++, C# and
Visual Basic.

Using the Formula AllCode with Visual Studio via the Visual C++, Visual C# or Visual
Basic programming languages is fairly straightforward and consists of using a DLL
library and associated files provided by MatrixTSL to communicate with the robot.

As will other languages, you need to use the COM port number that the robot is
connected to. There are examples on the Formula AllCode pages of the Matrix TSL
website here: https://www.matrixtsl.com/allcode/resources/

Using C#
The program on the right shows
a basic program in C#.

You should use the namespace
“FormulaAllCode” and place the
FA_DLL library file in the same
folder as your project. The DLL
itself needs to be in the same
folder as the EXE you create.

You will notice that the Formula
AllCode API commands are
prefixed with the characters
“FA_” and also need to have the
COM port sent to them each
time as the first parameter.

Remember to modify the API
commands in the appendix when
using them.

Also remember to close the COM
port at the end of your program!

using System;

namespace FormulaAllCode

{

class MyProgram

{

static void Main(string[] args)

{

//Assign the port number

char iPort = (char) 9;

//Open the COM port

FA_DLL.FA_ComOpen(iPort)

;

//Play a tune

FA_DLL.FA_PlayNote(iPort, 523,

400);

FA_DLL.FA_PlayNote(iPort, 659,

400);

FA_DLL.FA_PlayNote(iPort, 784,

800);

//Close the COM port

FA_ComClose(iPort);

}

}

}

https://www.matrixtsl.com/allcode/resources/

Page 23 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using C++ / C# / VB

Using VB
The same program is shown on the right,
this time in Visual Basic.

You will see that the program is
is very similar to the C# program, with
only some minor differences in syntax.
The calls to the Formula AllCode API are
identical.

The FA_API.vb file should be added to
your project.

Remember also to put the “FASlave.DLL”
file into the same folder as your created
EXE.

Using C++
A slightly different program is shown
for C++, this time drawing an equilateral
triangle.

To use the DLL with C++, you need
to reference the functions by including
the “FA_API.h” header file. You also need
to add the “FASlave.lib” file to your Visual
Studio project.

Also put the DLL into the same folder as
the EXE you create.

As with the other languages, the calls to
the Formula AllCode API are very similar,
meaning it is very easy to use the robot
with different languages - assuming you
know the basics of that language anyway!

Module Module1

Sub Main()

'Assign the port number

Dim iPort As Byte

iPort = 9

'Open the COM port

FA_ComOpen(iPort)

'Play a tune

FA_PlayNote(iPort, 523, 400)

FA_PlayNote(iPort, 659, 400)

FA_PlayNote(iPort, 784, 800)

'Close the COM port

FA_ComClose(iPort)

End Sub

End Module

#include "stdafx.h"

#include "FA_API.h"

int main()

{

//Assign and open the COM port

char iPort = 9;

FA_ComOpen(iPort);

//Draw a triangle

for (int i=0; i<3; i++)

{

FA_Forwards(iPort, 500);

FA_Left(iPort, 120);

}

//Close the COM port

FA_ComClose(iPort);

return 0;

}

Page 24 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using Python

Python is a widely-used computer programming language that is
available on many systems. It is free, easy to learn and fun to use.

This section will show you how to set up Python for use with Formula
AllCode. It is assumed you have a basic working knowledge of Python
itself. If not, there are many good resources on the internet if you wish
to learn this language.

Set-up
The first thing you need is to make sure Python is installed on your computer. It is usually
installed by default on a Raspberry Pi, but for Windows and other devices you will probably need
to download and install it from http://www.python.org.

There are two versions of Python, 2 and 3, and either can be used to control the Formula
AllCode robot, but you may wish to ensure you have the latest version installed.

In addition to Python itself, you will also need to install the PySerial library. This can be
found on GitHub: https://github.com/pyserial/pyserial or can be downloaded on a Linuxbased
device using the following command in a terminal window:

sudo apt-get install python-serial

Now that Python and the PySerial library are installed, you should download the Formula
AllCode Python library from here: https://www.matrixtsl.com/allcode/resources/

You will find examples and other resources on this page that will help you control the robot
in Python and many other languages.

My first Python program

import FA

fa = FA.Create()

fa.ComOpen(5)

fa.Forwards(100)

fa.ComClose()

Import the Formula AllCode library

Create an instance of the API

Open the COM port

Move forward 100mm

Close the COM port

http://www.python.org
https://github.com/pyserial/pyserial
https://www.matrixtsl.com/allcode/resources/

Page 25 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using Python

This very simple program drives the robot forward 10cm using the API command
Forwards, but there are a number of other lines of code before and after that command

that may need more explanation.

The first three lines of code import the library so you can use the API commands, then an
instance of the API is created and a communication channel to it is opened. The number
“5” represents the COM port that was created when the robot was paired.

It is important to close the COM port and at the end of the program we should do that
using a call to the ComClose API command.

Controlling multiple robots
By creating multiple instances of the
API, we can actually control more than
one at the same time. The program on
the right shows how this can be done.

Just like the first program, we start by
importing the FA library (note we are
also importing the “time” library too).
We then create 2 instances of the API
and open their COM ports.

The routine for drawing the square
should be self-explanatory.

Finally, both COM ports are closed.

Theoretically many robots can be
controlled simultaneously, but
unfortunately there is a practical limit
due to the capability of the computer’s
Bluetooth device. I have found 3 or 4 is
the realistic maximum.

Going further
We have shown only a few brief examples of how to control the Formula AllCode robot
using Python. If you look at the API reference at the end of this document you will find

Import the libraries

import FA

import time

#Create and open 2 robots

fa1 = FA.Create()

fa2 = FA.Create()

fa1.ComOpen(5)

fa2.ComOpen(6)

#Draw a square

loop = 0

while loop > 0:

fa1.Forwards(100)

fa2.Forwards(100)

time.sleep(1)

fa1.Right(90)

fa2.Right(90)

time.sleep(1)

loop = loop - 1

Close the COM ports

fa1.ComClose()

fa2.ComClose()

Page 26 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using Labview

LabVIEW is a development environment for creating custom
applications that interact with real-world data or signals in fields
such as science and engineering.

It can also be used to control the Formula AllCode robot.

This section explains how to get started

Using the robot with Labview is fairly easy and
consists of using a library provided by MatrixTSL.
First, download the library (which consists of a DLL
and a LabView library file) from the Matrix TSL
website:
https://www.matrixtsl.com/allcode/resources/

To begin, create a new blank VI and then open the
“FASlave.lvlib” file that was downloaded earlier.
This contains all of the function calls to the
Formula AllCode API, as shown on the right.

A sample program is shown below, using two sliders to control the robot. Set the number
in the “Port” box to the COM port number created for your robot when it was paired.

The program at the bottom of the page shows a flat sequence
structure that ensures the various parts of the program are called in
turn.

The left window executes first and opens the COM port.

The middle window loops until “stop” is pressed. It takes the value
of the sliders and sends it to the SetMotors API command every
100ms.

The next window stops the motors when the loop has completed and the final right-most
window closes the COM port.

https://www.matrixtsl.com/allcode/resources/

Page 27 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using Scratch

Scratch is a very popular programming tool for introducing coding
techniques to school-aged children.

While predominantly used to create programs that control on-screen
characters, you can also use it to control external hardware like the
Formula AllCode robot.

This section describes what you need to get started.

At the time of writing, there are many versions and derivatives of Scratch - both online and
offline. The instructions here relate to the Scratch 2 Offline Editor.

Scratch does not natively support external hardware, so we have written an external
“helper” application that translates communication between Scratch and the Formula
AllCode robot. There is also a template file to get you started with using the robot. You can
download this helper application and the template file from here:

https://www.matrixtsl.com/allcode/resources/

Before starting Scratch, run the helper application and select the robot you wish to connect
to from the list.

You can now open Scratch. First open
the template file to begin your new
project. This will load all of the API
commands in the “More Blocks” area
of Scratch. It will also give you a
Formula AllCode sprite and a basic
example program.

Creating your own programs should
now be simple.

For example, to move the robot when
the arrow keys are pressed, the icons
below can
be used.

https://www.matrixtsl.com/allcode/resources/

Page 28 Copyright © 2023 Matrix Technology Solution Limited

Controlling the robot
Using Scratch

There are many other programs you can write in Scratch. For example, here are three
pieces of code:

The first makes an interesting sound, the second does a little dance and the third plays a
familiar tune!

Of course, you can also link with on-screen activities as
shown on the right.

Here, the computer asks your name and then displays it on
the LCD of the Formula AllCode robot.

After that, it flashes the LCD backlight to catch your

attention.

More complex programs can also be
written. The program on the left
draws an interesting trigonometric
equation.

You can also read sensor values back

Page 29 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 1

This worksheet explains how to make the robot
move
forwards and backwards, and turn through a
specified
angular position so it can trace out a geometrical
shape, like a square, a triangle or a house.

It’s probably the very first thing you’ll want to do

Activity Standalone Skill Level Easy

Motor Controls
There are two ways to control the robot’s motors. The first method uses the API command
SetMotors to set the speed and direction of rotation for each of the two motors. This

particular command will be covered in detail in a later worksheet. The second method of
control is based on Logo movements.

Logo movements
Logo is a language designed many years ago to teach computer programming to students,
so they could control devices like a small robot or a turtle using a set of simple commands.

Forwards and Backwards
There are two API commands to control straight line movement.

Forwards <distance> and Backwards <distance>

The value for <distance> specifies the distance in millimetres the robot should travel and
can vary from 0 to 1000. Here’s a very simple program to make it move forwards and
backwards by 100 mm.

The important thing to note about
these two commands is the robot will
travel in a straight
line because there is rotational
feedback from each motor, to control
and vary the power
applied to the motors. Now let’s get
the robot to move sideways.

Left and Right
These are the two API commands to control angular movement.

Left <angle> and Right <angle>

The value for <angle> specifies the angle in degrees the robot should rotate and can vary

// An example program written in pseudo-code

LOOP-FOREVER

Forwards 100 //move forward 100 mm

DELAY 250ms

Backwards 100 //move backwards 100 mm

DELAY 250ms

END-LOOP

Page 30 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 1

Drawing the shape of a house
Let’s get a bit more adventurous and get the robot to mark out the front face of a house.

The suggested length for sides A, D and E is 200 mm.

As shown below, the roof structure consists of two right-angled
triangles that have a length of 100 mm for the base and
perpendicular.

Over to you
(a) Using Pythagoras theorem you can work out the length for sides B and C. You should
also be able to deduce the angles.

Then, using the program shown below as a guide, enter your calculated values (where you
see the question marks) and see if the robot draws the correct shape.

(b) See if you can get the robot to draw these geometrical shapes: equilateral triangle,
right-angled triangle, hexagon, parallelogram. What other shapes can you draw?

(c) Challenge one of your friends to draw a shape and get your robot to copy it.

Summary
This section has explained how to use the API commands to control the robot’s motors so
they accurately move forwards or backwards, or turn left or right a specified angle.

// An example program written in pseudo-code

Forwards 200 //Draw side A

Right ??

Forwards ??? //Draw apex B

Right 90

Forwards ??? //Draw apex C

Right ??

Forwards 200 //Draw side D

Right 90

Forwards 200 //Draw base of house, side E

Page 31 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 2

This worksheet explains how to use the eight green
LEDs, located towards the front edge of the Formula
AllCode Robot.

They can be used to produce interesting and creative
visual effects that will enhance your enjoyment of

Activity Standalone Skill Level Easy

LEDs
At the front of the robot is a row of eight LEDs. Each one has a reference number (from
LED-7 down to LED-0) as shown below.

The following two API commands enable you to turn an individual LED on or off.

LEDOn <index> and LEDOff <index>

<Index> can take a value between 0 and 7 to define the LED you want to manipulate.

For example to turn LED-7 on you would use: LEDOn 7 and to turn it off: LEDOff 7

Note:
These two commands just affect a single LED.

The state of the other seven LEDs remain
unchanged.

This program makes LED-7 blink 4 times a second.

If you wanted to set the state of all the LEDs at the same time then you can use the API
command LEDWrite <value> where <value> can take a value between 0 and 255.

Collectively the LEDs can be represented as an 8-bit binary number (i.e. a value between
0 and 255). LED-0 is the least significant bit and has a value of 1. While LED-7 is the most
significant bit and has a value of 128.

So to set the state of all LEDs at the same time you just need to work out the overall value
and then use LEDWrite <overall value> .

// pseudo-code example

LOOP-FOREVER

LEDOn 7

DELAY 125ms

LEDOff 7

DELAY 125ms

END-LOOP

Page 32 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 2
Watch out - those lights are animated

For example, to light just LED-2, LED-1 and LED-0, you would need to send the value 7
(i.e. 4 + 2 + 1 = 7) as a parameter. To do this you would use the following API command.

LEDWrite 7

Over to you
You may have heard of Knight Rider, an American television series, that featured a car
with a set of headlights that were used to create an animated sequence. The best known
sequence had the lights move in towards the centre and then back out again.

You should be able to create the Knight Rider pattern using the robot’s eight LEDs. The
first step is to work out the numerical values that need to be written to the LEDs.

The first pattern has LED-7 and LED-0 turned on together. You need to work out what
value this represents. The next pattern has LED-6 and LED-1 on. Again you need to work
out its value. Keeping on doing this until you have worked out all the values, then enter
those values into your program as API commands.

You will probably find you need to add a delay between API commands to give a smooth
transition and achieve the desired Knight Rider effect.

Other effects for you to try out
There are lots of other effects you can try out. Here are two suggestions:

The Snake pattern - this starts off with the first LED illuminated (value 1) then moves
across one place to the left so that the second LED is illuminated (value 2). This sequence
continues until the most significant LED is illuminated (value 128). Then the sequence
retraces its steps back to the beginning. The resultant effect should look like a snake
moving or weaving its head or body from side to side.

Another effect you might like to try is the Egg pattern. This pattern starts off like the Snake
effect but upon reaching the top most digit (value 128) the LED remains illuminated whilst
the pattern retraces its steps back to start. The effect is that of an ‘egg’ being laid at the far
end. The sequence then repeats again until LED-6 is reached. This LED remains on (as
well as LED-7) as the pattern retraces its steps.

Some patterns you might want to create may follow a mathematical sequence which
means you could output a value from a named variable as shown below.

LEDWrite <named_variable>

Summary
This section has shown you how to use the API commamds to manipulate the row of LEDs
on the robot by sending a value to control all eight LEDs together or individually.

Page 33 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 3
Switch it on, switch it off

This worksheet explains how the on-board push buttons
and LEDs operate so that you can understand how inputs
and outputs function in a simple digital system.

Standalone Activity Skill Level Easy

Push Buttons
Towards the front of the robot, next to the fixings for the motors, are two push buttons
labelled SW1 and SW2 that can be sensed by your program and used to trigger a task.

There is also another push button labelled SW3, adjacent to the micro-USB connector,
that performs a reset function whenever it is pressed.

The API command to read the state of SW2 or SW1 is:

ReadSwitch <index>

The ReadSwitch API call uses a single "index" parameter (0 for the left button, 1 for the
right button), and returns a value of 1 (pressed) or 0 (not pressed).

The way this call would be used is to assign the result to a named variable (e.g. SW_1).

SW_1 = ReadSwitch 0

If you just wanted to perform an action or a simple task when a button is pressed, then all
you need to do is test if the value in the named variable is greater than zero - then carry

// An example written in pseudo-code

LOOP-FOREVER

SW_1 = ReadSwitch 0

IF SW_1 > 0 THEN // Detect if SW1 is pressed

CALL SW_1_TASK // User routine

END-IF

SW_2 = ReadSwitch 1

IF SW_2 > 0 THEN // Detect if SW2 is pressed

CALL SW_2_TASK // User routine

END-IF

END-LOOP

Page 34 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 3
Switch it on, switch it off

Over to you
Now that you know how to check buttons SW1 and SW2 you should try writing a program
to perform a series of tasks one after another.

(a) When SW1 is pressed output the Knight Rider pattern to the robot’s LEDs, and when
SW_2 is pressed output the Snake pattern.

This means you will need to write some code to go inside the user routines labelled
SW_1_Task and SW_2_Task to output the desired patterns.

To keep things simple at this stage, you will find that your program will perform the above
sequence once, unless the appropriate button is still pressed.

When you finally release the button, the current pattern will stop when it comes to the end
of its sequence.

In a later worksheet you will find out how to write a program that remembers which button
was pressed, so you don’t need to keep your finger on the button.

(b) Make the left button cause the robot to draw a square and the right button draw a
circle.

(c) Have a look at the API commands in the appendix and see if you can make other
things happen when you press a button.

Summary
This section has shown you how to read the state of buttons SW1 and SW2 and perform a
certain task.

Another possible use for SW1 or SW2 is to act as a trigger, so that when a button is
pressed it sends a signal to another program telling it to commence operation.

For example, you could arrange for audio (previously recorded on the micro SD card) to
be played and the robot perform a dance when a button is pressed.

Page 35 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 4
Hello world

This worksheet explains how to send a text
message to the LCD panel located in the central
area of the robot.

The second part of this exercise covers sending a
series of multi-line messages that change after a
certain period of time.

Activity Standalone Skill Level Easy

The graphical LCD (gLCD) panel, situated in the centre of the robot, is capable of drawing
graphical elements like lines and rectangles, and manipulating individual pixels.
Note: These aspects will be covered in greater detail in another worksheet.

Using the panel in its non-graphical mode allows messages (text and numbers) to be
displayed, for example the numerical values obtained from the light or distance sensors, or
just a plain message to send “visual” feedback to the user. You can of course mix the two
modes by placing dividing lines, shaped blocks or user-created graphical symbols (near
pieces of text) to draw the user’s attention to certain parts of the panel.

The brightness of the panel’s back-light can also be varied under program control.
However it should be noted that having the back-light on fully will drain the battery quicker.

LCD panel layout
The diagram below shows how the X and Y coordinates of the panel are laid out. The X
coordinate runs across the top of the panel (from left to right) and can take a value from 0
to 127 to define a column on the display. The Y coordinate goes from the top to the bottom
of the panel and can take a value from 0 to 31 to define a row on the display.

Whenever you work in a graphical environment, it is normal practice to specify the X and
then the Y coordinate (i.e. the column and then the row), so the top-left position would be
known as 0,0 and bottom-right position as 127,31. A common mistake is to mix up the
coordinates which means your program will
display characters in the
wrong place.

X coordinate

Y coordinate

0.0

0.31

127.0

127.31

Page 36 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 4
Hello world

Now you know how the panel is laid out, you can write a message using the API call.

LCDPrint <x> <y> <text>

Hello World
Here’s an example of the message you see in most books about programming.

Here’s an example of a multi-line message centred on the LCD panel.

Each line of the message is centred by padding either side of the text string with spaces.
The number of spaces needed is calculated by subtracting the length of each message
from 21 (the character width of the LCD panel) and dividing the result by two. Sometimes
the result is an odd number which means one side of the message has an extra space.

Over to you
Turn the above program into a macro or sub-routine by gathering the pseudo-code
together and giving it a suitable name like MESSAGE_1. Once you have done that create
other multi-line messages, give them suitable macro names and combine them together to
make announcements in a timed sequence (as shown below).

Any information currently on the screen can be erased, with the API command LCDClear

before sending a new message to the LCD panel.

Displaying numerical values
If you need to display the numerical value of a named variable, then this can be achieved
using the API command.

LCDNumber <x> <y> <number>

// An example written in pseudo-code

LCDPrint 0 0 “Hello World”

// An example written in pseudo-code

LCDPrint 0 0 “ Hello and welcome ”

LCDPrint 0 8 “ to the ”

LCDPrint 0 16 “ Robotics ”

LCDPrint 0 24 “ Instructional Guide ”

// An example written in pseudo-code

LOOP-FOREVER

LCDClear

CALL MESSAGE_1

DELAY 5s

LCDClear

CALL MESSAGE_2

DELAY 5s

END-LOOP

Page 37 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 4
Hello world

Here’s an example of how the value of the named variable ‘distance’ could be displayed.
LCDNumber 0 0 distance

To make the layout more user friendly, a piece of text could be used to label the numerical
value so you know what it represents.

Back-light brightness
As mentioned on the previous page, the brightness of the panel’s back-light can be altered
to suit the viewing conditions. The API command to do this is: LCDBacklight <value>

where <value> can vary from 0 (back-light off) to 100 (full brightness).

LCDOptions in non-graphical mode
The following API call can be used to control the way text is shown on the LCD screen.

LCDOptions <foreground> <background> <transparent>

The first two parameters can take a value of 0 or 1 to define white or black respectively.
This means you can display white text on a black background, or black text on a white
background. The third parameter can also take a value of 0 (display text on foreground
and background) or 1 (display text on foreground only).

Related LCD commands
The following API commands affect the graphical aspect of the LCD panel and are
covered in a later worksheet.

LCDLine, LCDRect and LCDPixel

Things to remember
- the layout of the LCD panel is just like a piece of graph paper
- the X axis runs across the top and the Y axis goes down the side
- the X and Y axes are numbered starting from zero (not one)

Over to you (again)
This section has shown you how to use the various API commands to display and format
information (text and numerical values) on the LCD panel.

(a) Get the robot to display the lines of a joke. You will need to pause before displaying the
punch line!

(b) Display the results of your favourite football team. Perhaps pause between results until

// An example written in pseudo-code

LCDClear

LCDPrint 0 0 “Distance = ”

LCDNumber 66 0 distance

Page 38 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 5
How bright is that light?

This worksheet explains how to use the light sensor
located at the front edge of the robot.

The first exercise measures the light level and displays it on
the LCD panel.

The second exercise involves adjusting the illumination of
the LEDs depending on the ambient light level.

Activity Linked Skill Level Easy

Situated at the centre of the front edge of the robot is a light sensor. Although it looks just
like a plain LED it is in fact a photo transistor that reacts to the amount of light falling on it.
The amount of current that can pass through the device increases as the light increases.
So, by placing the device in a simple potential divider circuit will cause a voltage to vary as
the light changes. The robot can sense this and convert it into a value.

The API command to read the light level is: ReadLight and the way it would be used is to

assign the result to a named variable (e.g. illumination).

illumination = ReadLight

The first thing you should do is find out the range of numerical values produced by the
photo transistor under different lighting conditions. This simple exercise shows how to
measure the light level and display the value on the LCD panel.

Although the photo transistor can theoretically produce values from 0 to 4095, you may not
be able achieve them without placing the robot in a pitch black enclosure or holding it next
to a bright electric light bulb.

Write down some of the results you obtain when you place the robot in different parts of a
room or take it outdoors. Make a note as to whether it is a sunny or an overcast day.
You could also try shining a hand-held torch towards the light sensor and see what
readings you get as you move closer to or further away from the robot.

// An example written in pseudo-code

LCDClear

LCDPrint 0 0 “Light value = ”

LOOP-FOREVER

illumination = ReadLight

LCDNumber 84 0 illumination

DELAY 100ms

END-LOOP

Page 39 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 5

The next exercise is a very simple control or feedback system. The objective is to measure
the ambient light level and then use this value to adjust how many of the LEDs on the front
of the robot are turned on. The idea is to turn more LEDs on as the light level reduces, and
turn more off as the light increases.

If this idea was applied to a practical situation (using more powerful lights) then it should
be possible to maintain a room’s illumination at a constant level regardless of light levels.
The pseudo-code below shows how this is achieved.

The program begins by reading the value of the light sensor into the named variable
‘illumination’ and then divides this value by 16. This will scale the light reading to fall within
the range 0 to 255 rather than 0 to 4091.

To make sure the result is an integer we use the Round() function. Your chosen
programming language will have this function, but it might be called something else and
might require an extra parameter to specify the level of rounding.

The next part of the program creates the inverse proportional lighting effect by subtracting
the illumination value from 255. So what happen is, as the illumination value increases the
value in the named variable ‘LEDs’ decreases.

The last part of the program writes the value in the named variable ‘LEDs’ to the LEDs on
the front of the robot, then after a short delay the whole sequence is repeated.

Over to you
This section has shown you how to use the API call to read the value of the light sensor.
Try out the two exercises described here to gain experience of using the light sensor and
to reinforce your knowledge of operating the LCD panel and LEDs.

The second exercise will not work as expected - if the value of the variable “LEDs” is 127,
7 LEDs will light, yet if it is 128 then only one will light. Try to change the program so the
number of LEDs that light increased when the light level falls.

// An example written in pseudo-code

LOOP-FOREVER

illumination = ReadLight

illumination = Round(illumination / 16)

LEDs = 255 - illumination

LEDWrite = LEDs

DELAY 100ms

END-LOOP

Page 40 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 6
Searching for the light

This worksheet brings together the work covered during a
couple of previous exercises to solve a real-life problem.

The problem that needs to be solved is for the robot to
follow a light source from a hand-held torch. It sounds
simpler than you think!

Activity Linked Skill Level Intermediate

Strategy
The first thing you need to do, to solve the problem outlined above, is to work out a
strategy for dealing with the possible situations that could occur. For example, if the robot
detects the light-beam from the torch, then move forward a certain distance and check
again. Pretty obvious, but what should the robot do if it loses sight of the beam? It needs
to stop and try to find the light source.

One way to work out what the robot should do is to put yourself in the same situation and
think what you would do. Using your eyes you could probably see the light-beam. You
might have to move your eyes slightly to the left or right in order to ‘see’ the beam again. If
the beam has dramatically changed its position, then you might have to move your head
left or right because the amount of travel your eyes can make is physically limited.

The anatomy of the robot is a little bit different from ours. It might only have a single eye
(i.e. light sensor) in a fixed position (on the front edge of the robot), but it is able to move
its head through a full 360 degree rotation. Something we can’t do!

This is the strategy to try to find the light-beam. Currently the robot is stationary, so make it
rotate left by a certain angle, say 5 degrees, and check for the beam. If it manages to find
the beam then it starts moving forward. If it is unsuccessful, then it moves its head to the
right by the same angle, and checks again. If these two manoeuvres were unsuccessful,
then the angle is increased, to say 10 degrees, and the procedure repeated.

Here’s a sequence diagram to show pictorially how the strategy could
be implemented.

Point A is the robot pointing straight ahead. The arrow from A to B
indicates an angular movement to the left. B to C represents the robot
returning to point forward again. The arrow from C to D indicates an
angular movement to the right, while D to A is the return movement to
point ahead.

The existence of the light-beam is checked at all four points. The transition from D to A is the place
where the detection angle is increased before the sequence is repeated.

Page 41 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 6
Searching for the light

Here’s an example of the structure for the light searching program. To assist you in
reading through the program the API commands have been highlighted in blue.

Although the structure closely matches the textual description, given on the previous page,
there are a few things that you should note. The threshold value was obtained by
experimenting with a small hand-held torch in a room with subdued lighting. You need to
aim for the situation where the amount of available light plus the light from the torch does
not exceed the upper limit of the light sensor (e.g. 4095).

The main loop includes a short delay to smooth out the timing of the left/right movements.
You could try changing the value of the named variable movement and see how this
affects the behaviour of the robot and its ability to locate the light-beam.

// An example program written in pseudo-code

threshold = 2000 //Experimental value

pos = “A”

movement = 5 //Initial 5 degrees

LOOP-FOREVER

illumination = ReadLight

IF illumination > threshold THEN

pos = “A”

movement = 5

Forwards 100

ELSE

IF pos == “A” THEN

pos = “B”

Left movement

ELSE-IF pos == “B” THEN

pos = “C”

Right movement

ELSE-IF pos == “C” THEN

pos = “D”

Right movement

ELSE //Must be at point D

pos = “A”

Left movement

IF movement < 180 THEN

movement = movement + 5

ELSE

movement = 5

END-IF

END-IF

END-IF

DELAY 50ms //Short delay (see text)

END-LOOP

Page 42 Copyright © 2023 Matrix Technology Solution Limited

Worksheet
Follow my line

This worksheet brings together some tasks covered
in previous sections, to solve a real-world problem.

The problem that needs to be solved is for the
robot to use the on-board sensors to follow a black
line on a white background. It sounds simpler than
you think!

Activity Linked Skill Level Intermediate

If you’ve not looked underneath the robot now is the time to do so. You should be able to
spot the two sensors that detect the amount of light reflected off of a surface. Each sensor
includes an infrared emitter and a photo transistor, that can identify the difference between
white and black surfaces based on the contrast and reflective properties of an object.

The API command to read the line sensor is: ReadLine <index> and the way it would

be used is to assign the result to a named variable (e.g. line_reading).

The parameter <index> can take a value of 0 or 1 to select the appropriate sensor.

Here’s an example of reading line sensor-0 which is the left-hand sensor when viewed
from the upper side of the robot with the face of the gLCD panel pointing away from you.

left = ReadLine 0

As an exercise you could write a simple program to read the line sensors and display their
values on the LCD panel. This will enable you to experiment and see what sort of values

// An example written in pseudo-code

LCDClear

LCDPrint 0 0 “ Left Right ”

LOOP-FOREVER

left = ReadLine 0

right = ReadLine 1

LCDNumber 24 0 left

LCDNumber 72 0 right

END-LOOP

The above program should produce a clearly formatted screen with the line sensor values
displayed under the headings Left and Right. This will enable you to record the reflection
values for different types of surfaces. Note the readings for a black and a white surface.
The sort of readings you should get are probably 0 for black and 200 for white.

Page 43 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 7
Follow my line

Setting up a test track and solving the problem
If you have the mat that came with your robot you can make use of that, or you can make
your own track using a roll of 25 mm wide black tape stuck onto a piece of stiff white card.
An oval or figure-of-eight track are good shapes to start off with. Make sure the bends are
not too sharp or tight otherwise the robot will have a hard time navigating them.

When you use Logo movements the robot should travel in a straight, however there are
factors like skidding or grease marks on the surface that could cause the robot to gradually

The diagram above shows what happens when the robot veers off the track. At point B
and C the readings from the left and right line sensor respectively have changed to
indicate the robot is straddling the edge of the track.

The diagram below show the robot moving in a straight line when the direction of track
changes. Just like the above, this situation can be detected by sensing the change in the

To get the robot back on track it needs to perform a right movement at point B and a left
movement at C. The angle through which the robot needs to move can be obtained by trial and
error, or by applying some simple geometry and trigonometry as shown below.

Point X represents the centre-line of the robot where the two wheels
are fitted. Point Y is 25 mm towards the front of the robot and is the
normal resting place for the line sensors when the robot is moving
straight ahead. Point Z is the front to back centreline of the robot and
also mid-point of the black tape.
The distance between the two sensors is 17 mm which fits comfortably
across the 25 mm wide black tape.
Angle ‘a’ can be calculated by simple trigonometry or by constructing a
scale drawing. Either way the result you will obtain will be
approximately 10 to 12 degrees. This is the angular correction factor

Page 44 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 7
Follow my line

If you put all these facts together you can create a program to solve the problem.

// An example program written in pseudo-code

black = 0 //Reflection value from a black surface

white = 200 //Reflection value from a white surface

correction = 10 //10 degrees

LOOP-FOREVER

left_sensor = ReadLine 0

right_sensor = ReadLine 1

IF left_sensor >= white THEN

Right correction

ELSE-IF right_sensor >= white THEN

Left correction

ELSE

Forwards 10 //Both sensors detecting a black surface

END-IF

END-LOOP

The IF-THEN-ELSE construct checks where the robot is located. If it is on top of the black
tape then it should move forward. If it’s partly over the white area then the correction factor
should be applied to bring the robot back to the centre.

Over to you
Using the above program as a guide, you should try to get your robot to follow the line
using Logo movements.

The program uses global variables that are set at the start of the program. This will enable
you to change the values if the reflection properties of your surface are different.

You should also try changing the correction value to see how it affects tracking accuracy.
Then you could explore the other way to control the robot using the API call SetMotors.

This call continually operates the two motors as follows.
SetMotors <left> <right>

The parameters <left> and <right> can take a value from -100 to 100, where -100 means
maximum rotational speed in the anticlockwise direction, and 100 means full speed
clockwise. As an example, the API command SetMotors 50 50 would drive the robot

forwards at half speed, and SetMotors -50 -50 would drive it backwards, again at half

speed.

Modify the sample program, shown above, to make it work using the SetMotors

command. The speed-setting for the motors is a bit of a compromise between moving
along the track at a good pace, and not going too far off-track before the line sensors
detect and rectify this situation.

Using the above programs as a starting point, conduct some experiments to see how fast
you can get your robot to lap the track. Challenge your friends to see who has the fastest

Page 45 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 8
Push buttons do the work

This worksheet explains how the on-board push buttons can be
used to execute a specific task.

The worksheet includes an example of how to create a
Up/Down binary counter driven by the push buttons.

Activity Linked Skill Level Intermediate

A previous worksheet explained how to use the API call Read <switch> to sense the

state of SW1 or SW2 and execute a task if a button was pressed. Because the program
was very simple it had a number of limitations. The main one being you had to keep your
finger on a button if you wanted the task or sequence to repeat continuously. What if you
just wanted a task to be executed once, regardless of how long you pressed the button?

It’s like pressing a key on a mobile phone or a calculator. If you kept that key pressed you
would only want it to be sensed once, not repeatedly, otherwise you would get a series of
repeated numbers - like a machine-gun action.

What you need to do is detect the actual point when a button is pressed or released,
rather than the fact that a button is pressed. These points are coloured red on the

Sample points

Although there are many ways to detect these edges, the method described here is based
on taking a series of samples or snapshots with respect to time. Each sample is compared
with the previous one. If they are the same then the button has not moved, and if they are

// An example written in pseudo-code to detect rising-edge of SW1

SW1_previous = 0

LOOP-FOREVER

SW1 = ReadSwitch 0

IF SW1 > SW1_previous THEN // Detect rising-edge

CALL specific_task // SW1 rising-edge task

END-IF

SW1_previous = SW1

END-LOOP

Page 46 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 8
Push buttons do the work

Over to you
You now have a simple program to detect the rising-edge when SW1 is pressed. Modify
the program to make the robot turn right by 90 degrees each time SW1 is pressed.

Once you have achieved that task, extend the program so that the robot turns 90 degrees to the
left whenever SW2 is pressed.

If you think about the products/equipment you use that have buttons, a keypad or a keyboard,
you will find that most of them do something when you press a button. What if
you wanted a device to do something when you release a button?

The solution is very simple. All you have to do is modify your original program to detect the

// An example written in pseudo-code to detect falling-edge of SW1

SW1_previous = 0

LOOP-FOREVER

SW1 = ReadSwitch 0

IF SW1 < SW1_previous THEN // Detect falling-edge

CALL specific_task // SW1 falling-edge task

END-IF

SW1_previous = SW1 // Copy new sample to previous one

END-LOOP

You now know how to write a program to detect the point when a button is pressed and
when it’s released. Depending on what you are trying to achieve, you might want to detect
both edges or just one. The most common situation is to detect the rising-edge.

Another challenge for you
Write a program that uses the LEDs on the front edge of the robot to behave just like a
binary Up/Down counter. The program is controlled by SW1 and SW2. Each time SW1 is
pressed the binary counter is incremented, and when SW2 is pressed it is decremented.

You can decide, as it’s your program, which edge will be the active edge.

Some of the things you will need in your program are:
A named variable (e.g. counter) that will be used to hold the value of the binary counter.
An IF block to handle detecting when SW1 is pressed.
An IF block to handle detecting when SW2 is pressed.
The API command to write the value of the counter to the robot’s LEDs.

After you have read some of the other worksheets in this Instructional Guide you might

Page 47 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 9
Status panel

Activity Linked Skill Level Intermediate

This worksheet brings together a number of tasks
covered in previous sections of the guide book.

The objective is to detect the status of the robot’s
sensors and display the values on the robot’s
graphical LCD (gLCD) panel or a mobile phone.

Design strategy
As the gLCD is quite compact it will be difficult to show a lot of information at the same
time, so one solution is to show information for a particular type of sensor for a few
seconds and then move on to the next sensor. This means you can plan each layout and
then combine them together so they are shown cyclically. At the end of this worksheet are
instructions on how you could make the process user-driven rather than free-running.

Planning your first layout
The first status panel to tackle is the display of the light sensor’s value. Here’s a sketch of
how this could be laid out using a mixture of graphical lines,
text and a numerical value.

The first line is a simple static text-header consisting of 5 letters, a space followed by 6
letters making a total of 12 characters. This equals 72 pixels (i.e. 12 * 6 pixels). To get the
header centred you need to subtract 72 from 128 and divide the result by 2 (i.e. 28 pixels).
This means the header will start at X,Y coordinate 28,0. Here’s the API call to do this.

LCDPrint 28 0 “Light Sensor”

Next you need a dividing-line that runs the full length of the panel. Rather than placing it
directly under the text, it is suggested you leave a blank row of pixels so the text stands
out. Here’s the API command to place the line on row 9 (the tenth row).

LCDLine 0 9 127 9

The value obtained from the Light Sensor is displayed on the next line. As the value can
go up to 4095 (i.e. 4 digits), this means the width to accommodate the number is 24 pixels.
Again you can centre this on the panel by subtracting 24 from 128 and dividing the answer
by 2 (i.e. 52 pixels). Here’s the API command to display the value of a named variable.

LCDNumber 52 11 <named_variable>

Light Sensor

123

Page 48 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 9
Status panel

Over to you
First thing for you to do is create this simple program for the Light Sensor status screen.

// An example written in pseudo-code

// Status panel - Light Sensor

LCDClear

LCDPrint 28 0 “Light Sensor”

light_level = ReadLight

LCDLine 0 9 127 9

LCDNumber 52 11 light_level

LCDLine 0 19 127 19

You should tidy things up by putting the above program in a macro. (E.g. panel_1) Then
modify the code you just created for panel_1 to make panel_2 for the two Line Sensors.
Carry on and make additional panels for the set of distance sensors. Then combine them
together with a 5 second delay to make a rolling display just like you did with Knight Rider.
The program you have just created will display each status panel for 5 seconds and then
automatically move on to the next one. Although this is acceptable, it can be made much
more useful and user-friendly by adding a few extra touches.

For example, you could use the two push buttons (SW1 and SW2) to step forwards or
backwards to show the information on the various panels. This effect can easily be
achieved using the rising-edge detection technique covered in an earlier worksheet.

The benefit of this approach is once a status panel is selected its information will remain
on the screen until the user presses a push button. This is very useful when a lot of
information, like the data from the eight distance sensors, needs to be displayed.

Another way you could navigate around the panels is to detect a sound coming from the
robot’s microphone. For example, if you clapped your hands this action could be detected
and used to select the next panel in a rotational sequence. A worksheet towards the end
of this guide book explains how this can be achieved.

Summary
This section has brought together a number of topics covered on previous worksheets to
create a really useful Status Panel. You have also discovered how to display information
on the gLCD panel on a fixed-time basis, or by using the robot’s push buttons.

Line Sensor

Left Right

10 46

Page 49 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 10
Tilt and turn (using a mobile device)

Activity Linked Skill Level Intermediate

This worksheet describes how to use the outputs from an accelerometer to control the
robot, so it’s only really feasible to use it with a (mobile) device that has this capability.

Most mobile phones or tablets come with a 2 or 3 axis accelerometer (already built-in) that
can detect when you tilt your device from side to side or slope it forwards or backwards.
These are known as the X and Y axis. The third axis, the Z axis, shows movement when
the device is raised or lowered. What the device is actually measuring is the rate of
change of movement which is called acceleration.

This program makes use of the X and Y acceleration values to control the robot. For
example, when you tilt your mobile device from side to the side the robot moves to the
right or the left. When you tilt it forward or backwards this controls the speed and direction
of the motors. Tilting forward increases the forward speed, and tilting backwards increases
the speed in the reverse direction. Holding the mobile device level will stop the motors.

Accelerometer characteristics
The X output from the accelerometer (let’s name it xAccel) will give a value of 0 when the
device is at rest on a flat surface, a positive value when it is tilted to the right (i.e. its left
side is raised), and a negative value when it is tilted to the left (i.e. its right size is raised).
The Y output (let’s name it yAccel) will give a value of 0 when the device is at rest on a flat
surface, positive when its bottom is raised, and negative when its top is raised.

Speed and Direction calculations
Once the X and Y acceleration values have been obtained they need to be converted into
speed and direction values for the robot’s two motors. You can do some research on the
Internet and investigate different methods of performing this calculation. However, to keep
things simple, at this stage, the method used here is based on finding the average of the
sum and difference of the X and Y values.

Shown below is an App Inventor program that applies the averaging technique and uses
the resultant values as parameters for the API call to SetMotors <left> <right>.

This worksheet brings together a number of tasks
covered in previous sections of the guide book.

The objective is to develop an App that will control
the robot using the tilt sensor in the mobile phone or
tablet.

Page 50 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 10
Tilt and turn (using a mobile device)

Over to you
Once you have tried out this program you can have loads of fun driving the robot around
remotely from a mobile device. Why not set up an obstacle course to navigate?

Page 51 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 11
Lefty can navigate through a maze

Activity Linked Skill Level Intermediate

This worksheet brings together a number of tasks covered in
previous sections of the guide book.

The objective is to develop a program that enables the robot to
navigate a simple maze using the left-hand
wall-following technique.

This exercise is probably one of the most challenging and rewarding things you can do
with the robot. Making it move around and navigate a maze without it being touched
appeals to most people regardless of their age. It also opens up the possibility of engaging
in competitive challenges with friends to see who has the most agile and cleverest robot.

If you do some research on the Internet you will discover some of the many different
methods people have developed for escaping from the centre of a maze or navigating
through it. The most common method is the left-hand wall-following algorithm. An
algorithm is a procedure or formula for solving a problem. It can be written informally as
words or statements or in a structured way like a piece of pseudo code or a formal
programming language.

Let’s start off by assuming the robot has been placed at the entrance to a maze and see
how a workable algorithm could be developed. At this stage it might be a good idea to
share this exercise with a friend as you can bounce suggestions off of each other.

The robot has a set of distance sensors (positioned at the four corners and four edges)
that can be used to detect if any obstacles are in the way. What the robot needs to do is
check the left-hand distance sensor for the presence of the wall. It also needs to detect the
distance sensor at the front of the robot to make sure the forward path is clear, before
moving forwards. Situation (A)
as shown in the diagram below.

If the wall (on the left-hand side) disappears, indicating a gap in the maze, then the robot
needs to rotate to the left and continue following the wall. Situation (B) in the diagram.

Page 52 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 11
Lefty—escape from a maze

If the robot has arrived at a dead-end, as in situation (D) overleaf, then it needs to stop
and rotate clockwise by 90 degrees. When the robot reassesses the situation it will find
that its forward path is still blocked, so it needs to rotate clockwise again by 90 degrees.
The robot has effectively rotated by 180 degrees and can retrace its steps out of the deadend.

One way of looking at this is, to solve situation (D) you apply situation (C) twice.
The algorithm is nearly complete, all that needs to be done is encapsulate it in a loop so
the robot repeats the above steps on a cyclic basis. This solution is really a control
program, just like the programs that are used to control industrial processes.

Here’s an example of the program structure for navigating a maze. To assist you in
reading through the program the API commands have been highlighted in blue.

As mentioned previously, if the robot encounters a dead-end the program will apply the
rule for situation (C) twice in consecutive loops through the program.

Over to you
Create the program described above to gain experience of using the distance sensors to
control the speed and direction of the two motors.

Once you have managed to get your robot to navigate around a maze you should:
(a) Try changing the SetMotors values to see how fast you can get the robot to move

around the maze without crashing into a wall.

(b) See if you can work out other control algorithms for maze navigation. For example, you
could make use of the distance sensor on the right-hand side of the robot.

// An example written in pseudo-code

// Navigate a maze using distance sensors DS-0 and DS-2

clear = 100 //Path ahead is clear or there is no wall

wall = 10 //Wall detected

LOOP-FOREVER

left = ReadIR 0 //Read distance sensor DS-0 (left-hand sensor)

front = ReadIR 2 //Read distance sensor DS-2 (forward sensor)

IF left <= wall AND front == clear THEN //Situation A

SetMotors 50 50 //See note below

ELSE-IF left == clear THEN //Situation B

SetMotors 0 0

Left 90

ELSE-IF left <= wall AND front <= wall THEN //Situation C

SetMotors 0 0

Right 90

END-IF

END-LOOP

Page 53 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 12
Play that tune

Activity Standalone Skill Level Easy

This worksheet explains how to use the on-board
loudspeaker and digital signal processor to play musical
notes.

The second part of this exercise shows how to make a
simple music interpreter so that you can transcribe
sheet music and have fun getting the robot to play

Sound facility
The robot can create digital audio tones that are played using the small on-board speaker.
The frequency of the tones can range from 1 to 10,000 Hz and can have a duration from 1
to 10,000 ms. This means the robot covers a good portion of the audio range that humans
can hear. To do this you would use the following API command.

PlayNote <note> <time>

For example to play middle C, which has a frequency of 262 Hz, for 1 second you use:

PlayNote 262 1000

To play a series of notes you just repeat the API call and substitute appropriate values.
If you wanted to play a piece of music then this method would quickly become tiresome,
so here’s a method of making a very simple music interpreter. It is based on using letters
to represent the musical notes and numbers to signify the duration of each note.

Starting at middle C the letter sequence would be C, D, E, F, G, A, B. Number 1 would
mean one time-unit, 2 double that time, etc. You can decide how many milliseconds each
time-unit represents. At this stage fractional notes, sharps and flats will be ignored, and
only the first octave will be covered. You can extend the interpreter’s capabilities later.

The first step is to find out the frequency for the notes in the octave starting from middle C.

Middle C is 262 Hz, D is 294 Hz. You can find out the frequencies for the other notes.

Music Interpreter
To play a piece of music you need to take a page of sheet music and work out the name
and duration of each note. For example “D” 2 means note D played for twice the time.

Then you can enter the details into the program on the next page.

The program consists of a macro that decodes the name of each note and its duration. So
for example note “D” is replaced with the frequency value of 294 Hz. In a similar way the
numeric values are replaced with a number that defines how many milliseconds to play the

Page 54 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 12
Play that tune

Over to you
(a) Although this is a very simple music interpreter it lends itself to being extended and
enhanced. First complete the program for the notes listed.

(b) Next, add extra decoding to handle ‘sharps’, ‘flats’, ‘rests’ and other octaves.

(c) Finally add some code to handle ‘tempo’. So rather than having a basic time of 200 ms
you could use tempo as a scaling factor to make the music sound more realistic.

This section has explained the simple PlayNote command and then shown that with a bit of

// An example written in pseudo-code

// Music Interpreter

play(mynote duration) //Macro to decode your music

IF mynote == “C” THEN note = 262

ELSE-IF mynote == “D” THEN note = 294

ELSE-IF mynote == “E” THEN note = ???

ELSE-IF mynote == “F” THEN note = ???

ELSE-IF mynote == “G” THEN note = ???

ELSE-IF mynote == “A” THEN note = ???

ELSE-IF mynote == “B” THEN note = ???

END-IF

IF duration == 1 THEN time = 200 //Time unit is 200ms

ELSE-IF duration == 2 THEN time = 400

ELSE-IF duration == 3 THEN time = 600

ELSE-IF duration == 4 THEN time = 800

END-IF

PlayNote note time

END-play

CALL play(“A” 1) //Can you work out the title of this music?

CALL play(“G” 1)

CALL play(“A” 1)

CALL play(“C” 1)

CALL play(“A” 1)

CALL play(“G” 1)

CALL play(“A” 1)

CALL play(“C” 1)

CALL play(“C” 1)

CALL play(“D” 1)

CALL play(“E” 1)

CALL play(“D” 1)

CALL play(“E” 1)

CALL play(“D” 3)

CALL play(“E” 1)

Page 55 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 13
Robo-DJ

Activity Standalone Skill Level Easy

This worksheet explains how to use the on-board
loudspeaker and microSD card to play pre-recorded
material.

The second part of the exercise shows how you could
build a simple sound playback machine.

This simple exercise involves copying a piece of your favourite music onto a microSD card
and then getting the robot to play it back to you. Pretty easy. Great fun.

The first step is to locate a pre-formatted microSD card. These are the tiny memory cards
that fit into Smart phones and tablets. Next step is to temporally insert the card into your
mobile device and copy a piece of music onto it. If your music is located on a desktop or
laptop then you might need a SD-card adapter (unless your equipment is very new).

The recording format supported by the robot is Waveform Audio File Format commonly
known as WAV because of its file extension. Ensure your sound copying package is set to
output to the .wav format using one of the following sample-rate/bit-depth settings.

8KHz @ 8-bit, 8KHz @ 16-bit, 16KHz @ 8-bit or 16KHz @ 16-bit

Make sure the robot is switched OFF, then remove the microSD card from your copying
equipment and insert it into the robot’s microSD card slot.

You’re now ready to get the robot to play some music using the following API commands.

CardInit and CardPlayback <filename>

The first command initialises the robot’s on-board electronics that control the SD card. The
parameter <filename> defines the name of the .wav file to be played. This command
actually returns a value (0 means OK, 239 means file not found, and 255 means error).

Here’s an example to play a pre-recorded ‘wav’ file.
status = CardPlayback track1.wav

In a full length program you could arrange for a test to be made to see if the named
variable status has a value other than zero, and if so flag an error accordingly.
Over to you

You are now at the stage where you could record a series of ‘wav’ tracks on a microSD
card and then write a really simple program to playback a single track through the robot’s

Page 56 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 13
Robo-DJ

Sound playback machine
The example below shows a method of selecting tracks using SW1 to cycle round the
available tracks and SW2 to instigate playing the selected track. If you plan to use a
mobile device to perform these tasks you can use soft buttons on the device’s screen.

Over to you (again)
Although this is a very simple sound playback machine it lends itself to being extended
and enhanced. Add extra decoding to handle ‘forwards’ and ‘backwards’ track selection
rather than having to cycle round the tracks in one direction.

// An example written in pseudo-code

SW1_prev = 0

SW2_prev = 0

track = 1

LCDPrint 0 0 “Track = ”

LCDNumber 54 0 track

CardInit

LOOP-FOREVER

SW1 = ReadSwitch 0 // This is the track selector button

IF SW1 > SW1_prev THEN // Detect rising-edge

SW1_prev = SW1

IF track < 10 THEN

track = track +1

LCDNumber 54 0 track

ELSE track = 1

END-IF

ELSE-IF SW1 < SW1_prev THEN // Detect falling-edge

SW1_prev = SW1

END-IF

SW2 = ReadSwitch 1 // This is the execute button

IF SW2 > SW2_prev THEN // Detect rising-edge

SW2_prev = SW2

IF track == 1 THEN

CardPlayback track1.wav

ELSE-IF track == 2 THEN

CardPlayback track2.wav

ELSE-IF track == 3 THEN

CardPlayback track3.wav

ELSE-IF track == 4 THEN

CardPlayback track4.wav

etcetera

END-IF

ELSE-IF SW2 < SW2_prev THEN // Detect falling-edge

SW2_prev = SW2

END-IF

END-LOOP

Page 57 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 14
Mobile bug

Activity Linked Skill Level Intermediate

This worksheet brings together some tasks that have
been introduced in previous sections, to solve a typical
real-world problem.

The problem that needs to be solved is to create a spying
device. The robot drives to a location, records some speech,
drives back and then plays back the recorded speech. It

The objective for this exercise is to develop an App that will control the robot using the tilt
sensor and also operate the sound facility to record and playback speech. Although this
example uses App Inventor an equivalent package could be used to match your
development and target platforms.

Don’t be put-off. This exercise sounds more difficult than it really is. If you analyse the
problem you will soon discover that you have already tackled some of the tasks. For
example, the Tilt and turn worksheet explained how to drive the robot using a mobile
device. You also found out how to operate the sound playback facility in the Robo-DJ
worksheet, so the only item missing from the solution is learning how to record sound.

Sound recording using the robot is a little bit more involved, but not difficult, as the
following API calls are available to make things fairly straightforward for you.

The first thing you need to do is initialise the robot’s on-board electronics that control the

microSD card. This task is performed with the API call CardInit. This call returns a
value indicating the status of the system. Numeral 0 indicates system OK, 254 means an
error, and 255 indicates that a card has not been detected in the microSD card slot.

The next step is to start recording from the on-board microphone to the microSD card.

The following API command is used to perform this task.

CardRecordMic <bitdepth> <samplerate> <time> <filename>

The <bitdepth> and <samplerate> parameters need to be set to match one of the robot’s
four supported recording modes. These are: 8-bit@8KHz, 16-bit@8KHz, 8-bit@16KHz or
16-bit@16KHz. The first setting gives the smallest file size on the SD card, while the fourth
setting produces the best quality recording (but occupies a larger file size). Rather than
entering the actual values a numeric code is used, as per the tables below.

The <time> parameter defines the time-length of the recording. It can take a value from 1
to 65535 seconds. The last parameter specifies the name of the recording.

 8-bit 16-bit

bitdepth 0 1

 8KHz 16KHz

samplerate 0 1

Page 58 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 14
Mobile bug

Here’s an example to make a recording in the .wav format, at best quality, for 10 seconds.
CardRecordMic 1 1 10 track1.wav

This API call returns a value to indicate the status of the command. For example, it will
return numeral 0 to indicate system OK, 1 indicates the file already exists on the card, and
255 means an error has occurred.

If you want to delete a recording from the card then you can use the following command.

CardDelete <filename>

The next step is create a user interface for the mobile device.

Here’s an example of a simple layout as it would appear in
the Designer view of App
Inventor.

The first two soft buttons are concerned with the robot’s
Bluetooth communication facility.

The Stop button halts the movement of the robot by setting
the motors’ speed to zero.

The Start recording button issues the API command
CardRecordMic (as detailed above).

The Erase recording button deletes the recording from the
card. At the same time you
could display a message on the mobile device or the robot’s gLCD that shows…

“This recording will self-destruct after 15 seconds.”

To help you get started with block-coding, there are some examples, on the next page,
showing the events that are triggered in App Inventor’s Block view.

Over to you
You should modify the Tilt and turn app to become Mobile bug. Once you’ve done that you
could think about adding some extra functionality.

For example, write some code so that each time the Start recording button is pressed it
records to a different filename. E.g. track1.wav, then track2.wav, etc.

Another useful facility would be some sort of interlock to prevent a recording from being
played until the robot is safely back at base: extend your program to arrange for a certain
code to be entered before the playback facility can be activated.

Page 59 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 14
Mobile bug

Screen-shot of the events triggered by pressing the Start recording button.

Screen -shot
of the events

triggered when the !! Erase recording !! button is pressed.

Page 60 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 15
Robo-Pop

Activity Linked Skill Level Intermediate

This worksheet brings together some tasks, covered in
previous sections, to get the robot to dance to music
when a sound (like clapping of hands) is detected by
the microphone.

Instead of dancing you could program the robot to
perform a ‘celebration’ as if it was a footballer scoring

Don’t be put-off. This exercise sounds more difficult than it really is. If you analyse the
problem you will soon discover that you have already tackled most of the tasks. For
example, the Let’s move it, move it worksheet explained how to control the robot’s motors.
You also found out how to operate the sound playback facility in the Robo-DJ worksheet,
so the only item missing from the solution is learning how to detect a sound.

The API call to detect a sound is ReadMic. This call returns a value so the way it would

be used is to assign it to a named variable (e.g. sound_level) as shown below.
sound_level = ReadMic

The returned value can range between 0 to 4095 indicating the amplitude of the sound.
You may need to carry out some experiments to determine the threshold-value to match
the ‘sound’ you are planning on using as a ‘trigger’.

This
example
shows
how to
combine a
sound
detector
with
other
work you
have
done.

// An example written in pseudo-code

// Robo-pop triggered by sound detection

threshold = 100 //Set this according to your situation

DO

sound_level = ReadMic //Clap your hands to make a noise

UNTIL sound_level >= threshold

CALL play_some_dance_music //Use the code from “Robo-DJ”

CALL perform_some_groovy_moves //Use the code from “Let’s move it”

Page 61 Copyright © 2023 Matrix Technology Solution Limited

Worksheet 15
Robo-Pop

You now have your robot dancing and playing some music. So what could be missing?
Some lights, some laser beams - something to thrill the audience. Although the robot
doesn’t have any laser beams, it does have an LCD panel that can display graphical
shapes - lines, rectangles or squares and manipulate individual pixels. Using the robot’s
ability to draw some rectangles you can make a do-it-yourself (DIY) light-beam show.

DIY light-beam show
The following API command instructs the graphical LCD panel to draw a rectangle.

LCDRect <x1> <y1> <x2> <y2>

The parameters <x1> and <y1> define the top-left of the rectangle and <x2> and <y2>
bottom right. Here’s an example to draw a square 10 by 10 pixels at coordinate 0,0.

LCDRect 0 0 10 10

Over to you (again)
Now that you’ve seen how to draw a black square, let’s put a bit of animation into it. Your
challenge is to make one or both of the black squares, shown in the diagram below, move
across the LCD panel and back again (like a light beam on the dance floor at a disco).

If you make the starting point for square A at coordinate 0,4 and square B at 116, 18 then
both squares will have space to slide over each other.

The next thing you need to consider is how to make the squares move.

The simplest method is to use a couple of named variables that act as counters to give the
offset for the position of each square, and use them within the call to LCDRect.

LCDRect counterA 0 bottom_right_A 13

For example, the counter for square A starts at 0. To move the square to the right you
increment the counter (by a suitable value, say 5) and call LCDRect again. Bottom_right

is another named variable that takes the value: bottom_right_A = counterA + 10

You will need to insert a short delay before the sequence is repeated so that the black
square moves smoothly across the screen. Your program you will need to check when
counterA reaches the far-right of the LCD panel - and decide whether to reset it to its
starting point, or just retrace its movement (as in the diagram).

A

B

Page 62 Copyright © 2023 Matrix Technology Solution Limited

Taking it further
Challenges 16-20

The final 5 challenges are collected here for those
who want to take things further.

We are not giving you much guidance here because
the majority of work here builds on the previous
worksheets and if you’ve got this far you’ll be a
programming expert!

Challenge 16 - Logging data
There are lots of possibilities here: Use the SD card API commands to log the sensor data
on a journey or the light level as the sun goes down in the evening. You could also spin
whilst logging the light level to produce a 360° graph of light in the room.

Challenge 17 - Using the servos
Attach servo motors to the expansion port and turn the robot into a digger or give it a “foot”
to kick a ball with.

There are 4 servo motor attachments at the front of the robot and the commands to control
them are listed in the API reference.

Challenge 18 - Pimp my ride
Design a shell for the Formula AllCode robot which makes your robot stand out. Perhaps
you can use a 3D printer to create a truly unique body for the robot.

Attach to the robot’s chassis using the 4 holes near the wheels.

Challenge 19 - Customised electronics
Extend the individuality of your robot by adding LEDs and other custom electronics to its
expansion ports.

Remember to wire your electronics correctly so you do not damage the microcontroller!

Challenge 20 - Acceleration and orientation
Did you know there is an inbuilt accelerometer? You can use this to measure how much
the AllCode robot is accelerating, what forces exist when it turns a corner, and even which
way up it is (Einstein taught us that gravity and acceleration are essentially the same
thing!).

The API command for reading the Accelerometer is ReadAxis.

Page 63 Copyright © 2023 Matrix Technology Solution Limited

Appendix 1
API Reference Chart

This section lists the API calls by their functional groups so it’s easy to find the particular
command you’re looking for. There are different types of call - some return a value, some
don’t. Some require one or more parameters others don’t.

For example, the API call SetMotors requires two parameters to define the speed of the

two motors, whereas the call to ReadLight just returns a value (i.e. light sensor value).

There are other calls that require a parameter and will also return a value.

A good example is the ReadIR API call. This call needs a parameter to define which IR

sensor you want to check. The return value is the distance measurement for that particular
sensor.

Connection

Return Command Parameter(s) Description

status ComOpen port Open COM port
 Port= 1 to 255
 Status= 0(OK) or 255(error)

status ComClose Close port
 Status= 0(OK) or 255(error)

version GetAPIVersion Returns the version number of the API
 Version+ 1 to 65535

Sensors

Return Command Parameter(s) Description

value ReadSwitch index Read the switch value
 Index= 0(left) or 1(right)
 Value= 0(false) or 1(true)

value ReadIR index Reads an IR sensor
 Index= 0 to 7
 Value= 0 to 4095

value ReadLine index Reads a line sensor
 Index= 0(left) or 1(right)

value ReadLight Reads a light sensor
 Value= 0 to 4095

value ReadMic Reads microphone sensor
 Value= 1 to 4095

value ReadAxis index Reads an axis of the accelerometer
 Index= 0 (x), 1 (y) or 2 (z)
 Value= -32768 to 32768

Page 64 Copyright © 2023 Matrix Technology Solution Limited

Appendix 1
API Reference Chart

Motors

Return Command Parameter(s) Description

 SetMotors Left
right

Set the speed of the motors
 Left = -100 to 100
 Right = -100 to 100

 Forwards distance Move torwards distance (in mm)
 Distance = 0 to 1000

 Backwards distance Move backwards distance (in mm)
 Distance = 0 to 1000

 Left angle Turn left angle (in degrees)
 Angle = 0 to 360

 Right angle Turn right angle (in degrees)
 Angle = 0 to 360

LED / Speaker

Return Command Parameter(s) Description

 LEDWrite value Write value to the LEDs
 Value = 0 to 7

 LEDOn index Turn an LED on
 Index = 0 to 7

 LEDOff index Turn and LED off
 Index = 0 to 7

 PlayNote note
time

Output audio note (in Hz) for time (in ms)
 Note = 1 to 1000
 Time = 1 to 1000

Servo

Return Command Parameter(s) Description

 ServoEnable index Enable a servo channel
 Index = 0 to 3

 ServoDisable index Disable a servo channel
 Index = 0 to 3

 ServoSetPos Index
position

Set a servo position
 Index = 0 to 3
 Position = 0 to 255

 ServoAutoMove Index
position

Auto-move to a servo position
 Index = 0 to 3
 Position = 0 to 255

 ServoMoveSpeed speed Set servo auto-move speed
 Speed = 1 to 50

Page 65 Copyright © 2023 Matrix Technology Solution Limited

Appendix 1
API Reference Chart

LCD

Return Command Parameter(s) Description

 LCDClear

 LCDPrint X
Y
text

Print text on the LCD
 X = 0 to 127
 Y = 0 to 31
 Text = <string>

 LCDNumber X
Y
value

Print an integer value on the LCD
 X = 0 to 127
 Y = 0 to 31
 Value = -32768 to 32767

 LCDPixel X
Y
state

Draw a pixel on the LCD
 X = 0 to 127
 Y = 0 to 31
 State = 0 (off) or 1 (on)

 LCDLine X1
Y1
X2
y2

Draw a line on the LCD
 X1= 0 to 127
 Y1 = 0 to 31
 X2 = 0 to 127
 Y2 = 0 to 31

 LCDRect X1
Y1
X2
y2

Draw a rectangle on the LCD
 X1 = 0 to 127
 Y1 = 0 to 31
 X2 = 0 to 127
 Y2 = 0 o 31

 LCDBacklight Value Set the LCD backlight brightness
 Value = 0 to 100

 LCDOptions Foreground
Background
transparent

Sets option for drawing on the LCD
 Foreground = 0 (white) or 1 (black)
 Background = 0 (white) or 1 (black)
 Transparent = 0 (false) or 1 (true)

Page 66 Copyright © 2023 Matrix Technology Solution Limited

Appendix 1
API Reference Chart

SD Card

Return Command Parameter(s) Description

status CardInit Initialise the SD card
 Status = 0 (OK), 254 (error) or 255 (no card)

status CardCreate filename Create new file
 Filename = <string>
 Status = 0 (OK), 1 (file exists) or 255 (error)

status CardOpen filename Open an existing file
 Filename = <string>
 Status = 0 (OK), 239 (file not found) or 255 (error)

status CardDelete filename Delete a file
 Filename = <string>
 Status = 0 (OK) or 255 (error)

status CardWriteByte data Write a byte of data to the open file
 Data = 0 to 255
 Status = 0 (OK) or 255 (error)

data CardReadByte Read a byte of data from the open file
 Data = 0 to 255

status CardRecordMic Bitdepth
Samplerate
Time
filename

Record the microphone
 Bitdepth = 0 (8bit) or 1 (16bit)
 Samplerate = 0 (8K) or 1 (16K)
 Filename = <string>
 Status = 0 (OK), 239 (file exists) or 255 (error)

status CardPlayback filename Play an audio file
 Filename = <string>
 Status = 0 (OK), 239 (file not found) or 255 (error)

status CardBitmap X
Y
filename

Display an image on the LCD
 X = 0 to 127
 Y = 0 to 31
 Filename = <string>
 Status = 0 (OK), 239 (file not found) or 255 (error)

Page 67 Copyright © 2023 Matrix Technology Solution Limited

Appendix 2
Microcontroller pin connections

Page 68 Copyright © 2023 Matrix Technology Solution Limited

Appendix 3
Musical note frequencies

Page 69 Copyright © 2023 Matrix Technology Solution Limited

Appendix 4
Setting the Robot’s Name

The Bluetooth name for the Formula AllCode can be changed by using a PC with the
mLoader software installed. The mLoader software can be downloaded from the
MatrixTSL website.

http://www.matrixtsl.com/formula-allcode/

Once you have downloaded the mLoader software there is a file in the software folder
named Formula AllCode Rename. Double click this file to start the mLoader software in
the Bluetooth rename mode.

Connect the Formula AllCode robot to the PC using the USB cable provided and press the
reset button on the robot to allow the mLoader software to see the robot.

Once you have done this you can use the mLoader software to set the Bluetooth name
and pair key (sometimes called the passcode) by entering the required details into the text

We recommend you keep the key set to the default “1234” unless you are working in a
group of other users and want to prevent others from connecting to your robot. If you do
change the pass key, you will need to enter the existing key, so try to remember it!

If the key is changed and you cannot remember it, please contact Matrix for instructions on
how to reset it.

http://www.matrixtsl.com/formula-allcode/

Page 70 Copyright © 2023 Matrix Technology Solution Limited

Appendix 5
Reloading the AllCode API Firmware

By default the Formula AllCode robot will arrive with the API firmware already installed. As
the robot is reprogrammable using languages like Flowcode or C, it is possible to overwrite
the factory AllCode API functionality. It is also possible that newer versions of the API
firmware are released and you may want to upgrade to the latest version.

The API firmware is available to download in the form of a hex file from the Formula
AllCode page of the MatrixTSL website. To load the hex file onto the Formula AllCode you
need a copy of the latest mLoader software which is also available from the website:

https://www.matrixtsl.com/allcode/resources/

You can connect the Formula AllCode to the PC using the supplied USB cable or using
the Bluetooth data connection. Open the mLoader software and press the reset button on
the robot to allow the mLoader software to see the robot.

Click the “…” icon next to the File Name text field to select the hex file to send to the
AllCode.

Click the Send button to transfer the hex file to the Formula AllCode and restore the API
firmware. Remember to press the execute button once the firmware has been sent to
allow the Formula AllCode firmware to run.

https://www.matrixtsl.com/allcode/resources/

Page 71 Copyright © 2023 Matrix Technology Solution Limited

Notices

Trademarks
PIC, PICMicro and dsPIC are registered trademarks of Microchip Technology. Raspberry Pi is a registered
trademark of the Raspberry Pi Foundation.

Other product names that appear in this document may be trademarks of their own respective owners.

Release notes

Version Release date Notes

Version 1 25/02/2016 Initial release

Version 2 04/05/2016 Converted to Publisher file

Version 3 04/08/2017 Fixed links to various resources

