
FLOWCODE 8

Component Creation

Build A Flowcode Component

Design & build your own Components

Note – You should created two Floders:

1 – The working component project 2 – Your Finished Components Library

2

Discover how to build Sub-Components (advanced

shapes) like this Flasher, to use in your own

component designs and how to give them a unique

GUID.

GUID - globally unique identifier

Every component is made up of various simple shapes,

that you can put together in graphic sets (see

opposite), to build your own flowcode 7/8

sub-components. These can be used to build: -

- Relays

- Solenoids

- Displays etc

The list of possibilities is endless and entirely up to you, to build unique components

to meet your own project or business needs.

Each unique graphic set/block requires an – GUID in order for flowcode API to

recognise each finished sub_component or final component. There may be more than

one sub_component used with its own GUID, in your project. However, when we have

completed the assembly of those sub_components, the final component will have its

very own GUID, that you can save in your own Component Library, that either FC7/8

can access in your projects.

To view the information stored in each component such as this

RX/TX Flasher (a sub-component), from the tool-bar, select the

component of interest: -

- From the pull-down menu select details

This will give you the following:

3

All these graphics sub-components will give you endless possibilities to enhance

your set of available components to be used in your projects and they will be fully

compatible with Flowcode 7 & 8.

Getting Started

When you have a situations that requires a component to be built for use within your

flowcode 7/8 graphical programming environment, that is not readily available in

Flowcode 7/8 standard component package(s). This may be due to a specialist project

you are working on or maybe it is a device that requires a unique set-up. I’m talking

about devices you wish use and to simulate during development, before committing to

the final production stage of the embedded microelectronic device/controller of your

project. Devices that are regularly requested; displays using controller chips not found

within the standard display component pack or extended I2c controllers. These are

among those frequently required. I would like to add to the previous tutorials I have

written and show you how to build those Graphical Sub-Components used to create

your own FC7/8 components.

4

Let’s start with this graphical sub-component:

Rx/Tx Flasher – it’s not an actual component, it’s an advanced shape used to build

FC7/8 components referred to as a Sub-Component.

I have studied this advanced shape for quite some time in

FC7 and struggled to figure out have to construct those

arrows, let alone as to how to make them flash during

simulation. When FC8 was released, I stopped writing the

tutorial. I now have FC8, therefore I can build and test

accordingly.

Thanks goes the ‘Benj’ for his help in getting me started back in FC7, so now I would

like to share with you, how building sub-components in FC8 & FC7, is done.

It is very important to understand what these graphical shapes are and how they are

used to build your final FC7/8 Component(s).

A FC7/8 component is simply a graphical representation of something that looks like

or represents the device you are using, but is a library of all the

connections/logic/functionality of your device, wrapped up in one nice graphical image.

So, we can use lots of different graphical shapes, put them together to look like your

device and simulates that devices action(s) when required during simulation/testing. It

makes checking that devices functionality that much easier during the development of

your project, to ensure that your final project behaves/functions as you expected

when completed.

Flowcode comes with a set of shapes you can use for building complex FC8

components and sub-component – 2D; 3D and Shapes

I’ll show you how to put them together to build your very own FC8 sub-components.

Once you have mastered the workflow of putting them together, it should help you to

get started building your very own final flowcode 7/8 components.

5

The Shapes

The shapes we are interested in are those 2D & 3D shapes.

Often wondered what they were used for, well now I am going

to show you. We are going to make our own sub_component

to build graphics that simulate the devices we are using in our

projects. Once we have constructed a sub-component using

these shapes, you will be able to use it to make a FC7/8

components that contains all the working logic/functionality of

the device you are using, wrapped up in a nice graphical

image.

One very important point – these graphical

shapes/components may have a lot of programming code to

get them to simulate correctly. However, this simulation code

is never downloaded onto the chip/controller, so don’t worry

about the amount of simulation code you need to get them to

simulate correctly.

Tested On

Flowcode v8.1.1.11

Built Dec 14 2018

Flowcode 7 v7.3.0.7

Built Feb 26 2018

6

Step 1 – The work Space

Throughout this tutorial, you will be using just

the standard screen layout as shown opposite:

- 2D Dashboard Panel

- Start page

- Properties Panel

Create a project called – Simple_Flasher and save!

You can use absolutely any embedded chip you like, it simply does not matter as

everything you are doing does not involve chip related code during this Advance

Shape sub-component building process.

Build a Simple Sub-Component

It’s called an sub_component, simply because it uses several simple shapes put

together for one purpose – simulation and appearance. It will be saved (with a unique

GUID) but will only be available as a sub-component (advanced shape) to build your

final FC7/8 component that can be exported to your Component library.

Let’s begin by building a simple flashing box with a label – simple! This simple shape

will be further developed to build components such as relays/pumps/valves etc.

Requirements: - kept simple to for Illustration Purposes

- The box can be called by the user to flash when required during the

simulation of a component

- The colour (of the box) can be changed to show effects such as ON/OFF

- The duration of the flash rate of the box can be changed by the user or set to

be ON until turned OFF

- The label can be edited by the user

What this sub-component (advanced shape) will gives us – the ability to use it for

constructing any simple device graphically and simulate that device when it is

turned ON or OFF such as a relay.

Once you have finished building this sub-component (advanced shape) you will begin

to understand the process of simulation along with the use of component variables to

get everything to simulate correctly. This way, you will begin to see the possibilities

FC7/8 has to offer the advanced user. Yes, this simple shape is just the start but

illustrates the work-flow required to build your own sub- components and final

component.

7

Step 2 – Construction

IMPORTANT – See: Using The 2D Dashboard Panel

Begin by placing rectangles as shown onto the dashboard panel. These two

rectangles, I believe create a colour scheme to suit both Flowcode environments (FC

7 & 8).

You will notice details of the rectangle(s) displayed in the properties panel:

- Size

- Colour

- Location (world location or actual location) etc

See – Component Creation pt2

First Rectangle:

Width 60.0000mm
Height 30.0000mm
Colour – Blue – FF8057
 Your choice

Place a second rectangle on top:

– Width 57.5mm

– Height 27.5mm

– Dark Grey - 1E1E1E

If you click anywhere onto the 2D dashboard Panel, the Properties Panel will be blank.

However, the sizes and colour of all the shapes you use will still be stored in its own

hidden library.

This is because, when this sub-component is exported to your

component library, FC8 begins to store all its details in a library –

which I will come back to later. For now, what you see graphically,

will be seen by the user when building FC8 components, so we need

to get this stage looking right.

The grey rectangle gives us a background to place everything on

that we need for our sub-component. The properties will not be seen

unless we chose specifically to do so. Think of this rectangle as your canvas to get

something that looks the way you want for a simple device, any device for now.

8

Step 3 – The Flashing Box Construction

This simple shape is the start to get a working simulating in FC8/7.

Looks simple enough. I am going to take you on a journey, putting

more shapes together in the next tutorial, that you can control through simulation, to

get some impressive results, e.g. how to get it to change colour or even appear to

flash (turn ON then OFF).

This is what took me some time to understand:

First, we need to construct the complex shape we want

from those simple shapes available in FC7/8.

The process of building complex shapes - is by arranging

each of these basic shapes in the 2D Dashboard Panel to

form the final shape we want. Their sizes & orientation will

need to be changed, then placed next to each other to look

like your device you are using. We are going to start with a

single simple shape a (rectangle) to begin the process.

Once you have mastered this, we will begin to add further

shapes to build more interesting and complex shapes for

use in your FC7/8 Component creations.

This is the above smaller rectangle placed upon

our – canvas. I’ve changed its size and colour to

what I want. However, I want to be able to make

its colour change during simulation.

9

IMPORTANT – See: Using The 2D Dashboard Panel

When you first place these shapes in the 2D Dashboard Panel it will look like

something like this shown here.

You can adjust the size to make a smaller

rectangle that is placed on top of the larger

two rectangles – The Canvas

Click onto the rectangle to highlight it. Then,

from the Properties Panel, select Position

and change the World size to:

- Width 15mm

- Height 5mm

Change the World coordinates to –

X = 10.000mm Y = 0.000mm

Hopefully, you have a little red rectangle

that looks like that opposite.

Well, where you place it is up to you. All we

need to get this red rectangle to change

colour – Flash.

Handle - shape_rectangle1

Next - we are going to begin to set everything up so we can control how the smaller

rectangle is simulated in the flowcode 7/8 environment.

10

Step 4 – The Flashing Shape

Take a closer look at the Properties Panel.

There are three menus:

– Properties

– Position

– Macros

We need to select the menu – Properties.

Click anywhere onto the 2D dashboard Panel and

you will see that there are no properties associated

with our shapes.

Click onto the red rectangle and change it’s

Handle to – led1

Why – this will make referencing it during

simulation much easier!

You need to set up this graphic

component block properties variables.

This is necessary, for any future

component built using this sub-

component (simple advanced shape)

flasher, will require various variables,

used for simulation purposes, to be

changed that will be stored in its own

library + GUID and allow on- screen

simulation effects.

Next – How to set up those variables

11

Step 5

From the pull-down menu on the properties panel – select

Add New

The first variable we are going to set up is: -

• Flash_ON – colour variable

This is the colour a user will see and be able to select, during

simulation when the shape (Handle – led1) is turned on.

The cosmetic name: - Flash_ON

Variable:- ON_flash

I’ve have deliberately tried to differentiate the variable from its cosmetic

name.

Property Type:- Color Picker (Unsigned Integer)

ULONG

Icon:

Range: 0 to 4294967295

Bit Depth: 32-bit unsigned integer

Note - An unsigned 32-bit value offers the largest integer value of any of the variable types, and because

of this, many of the simulation-only functions in Flowcode use ULONG, because simulation memory is not a

consideration. Remember, nothing here is down loaded onto the chip!

Click OK to confirm

There are several variable types available. We need

to be able to identify each variable type, as this will

be very important to us when transferring information

from an active variable – its stored data must not

be altered or destroyed by any simulation

process unless it is required to do so, to a local

temporary variable that is used to get changes

necessary for simulation purposes.

Global variables are shown here:

Local variables are shown here:

Ideally, we only need local variables to achieve

simulation – i.e. what appears on the screen.

https://www.matrixtsl.com/wiki/index.php?title=File:VarULongThumb.png

12

The size/type of variable is also important. If the data is in the range of – 0 to 255 or

0x00 to 0xff, then a Byte variable is ideal;

BYTE

Icon:

Range: 0 to 255

Bit Depth: 8-bit unsigned integer

However, we are going to make the small rectangle flash or change colour. You may

be aware that colour information is stored as either 8bit; 16bit or 32bit. The size of the

variable to store that information is very important.

You should now have the following shown on your

Properties Panel:

You need to set the colour value for – ON_flash

This will give a Properties variable selected from the

list – Colour picker

You can change the colour to what ever you want and

will be available to you – the user – when building your

components. If you click anywhere in side the 2D Panel,

the Property variable will still be visible. This is because

it is now stored in its own unique library.

The numbers to the right for GREEN is – 80ff57

This is a 24bit hexadecimal value.

Flowcode will store these value using a 32bit variable as

shown here

You will see the icon next to the variable

This shows - the exact variable type used by the GUID library

for storing the variable – ON flash color

Repeat the above and set up –

- OFF flash

https://www.matrixtsl.com/wiki/index.php?title=File:VarByteThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarULongThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarULongThumb.png

13

Click onto the small rectangle and

from the Properties Panel: -

Under properties – color select

from the drop down menu:

Expose to top level

The variable – led1::color is a hidden variable. You must exposed this variable to allow both

observation & Simulation (how its value changes during simulation) and the transfer of data to a

temporary holding variable during simulation .

14

Step 6

We are going to create two Macro’s for this simple sub_component flasher that can

be simulated (ON/OFF) using these macros and inserted into your final component.

You will be able to change the variables to adjust the colour (led1::color) for the shape

you have used using the colour picker. However, the colour variables for the small

rectangle, must be set up first.

So far, the variable you have created are: Global Colour variables – store in

the Properties Panel These are the colours you chose for ON & Off. What we

need to be able to do, is transfer these ON/OFF colours to our small rectangle – here’s

how.

- ON_flash colours

- OFF_flash

Create two macros

add the following variables under –

LOCAL Variables

1. flash_ON macro

Variables - local

- Blue

- Green

- Red

- ON_colour (temp store)

2. flash_OFF macro

Variables - local

- Blue

- Green

- Red

- OFF_colour (temp store)

https://www.matrixtsl.com/wiki/index.php?title=File:VarULongThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarULongThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarByteThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarByteThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarByteThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarULongThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarByteThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarByteThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarByteThumb.png
https://www.matrixtsl.com/wiki/index.php?title=File:VarULongThumb.png

15

Place the following ICON’s for

the Macro – flash_ON

- Calculation

- Simulation

To get the small rectangle to change colour, we need to change the property value

of – color associated to the shape – led1

Remember that variable we – exposed!

led1::color

16

The small rectangle shape we called Handle - led1, has a hidden library. That library

has a variable called led1::color associated to its colour. Well, we get to change it

when we added the simulation ICON.

Click onto the simulation ICON and:

- Select Function

- Component

- Property

- Setcolor
(has the hidden colour data led1::color)

Parameters

Handle – led1 this holds the data of (led1::color)

- Red .Red (local variable)

- Green .Green

- Blue .Blue

Note – All local variables are signified by the dot .Red etc

These 8bits colour variables will change the led1::color variable!

Repeat for the OFF Macro

Place the following ICON’s for the Macro

– flash_OFF

- Calculation

- Simulation

To extract each of the colours to change - .Red; .Green; .Blue of our shape, in order

to simulate – ON colour executing the ON Macro; and the OFF colour executing the

OFF Macro, we need do some math.

This is achieved as follows: - All the colour information is stored in a UNIT LONG

variable led1::color. The colour information is stored as: - RGB i.e. first 8bits -

RED; second 8bits - Green followed by the last 8bits - Blue. To extract each 8bit set,

we use a method such as: -

1. Transfer the led1::color variable into the temp. variable - ON_colour

2. Use the AND function to mask the bits we want

3. Shift the bits along the register until we get the next set of 8 colour bits

4. Use the AND function again to extract those colour bits

5. Keep doing this until all three colours have been extracted.

https://www.matrixtsl.com/wiki/index.php?title=File:VarULongThumb.png

17

This is how it works

Remember, we have set up a variable to temporally store the contents of the colour –

flash_ON; and flash_OFF. This is necessary to prevent errors by permanently

changing the contents of the variables set by the user – ON-flash; OFF_flash macro

To extract the – RED 8Bits

24 ON_colour variable Bit 1

1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1

 AND 0xFF

 variable .Red

To extract the -GREEN 8Bits

Rotate Right >> 8

0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1

 AND 0xFF

 variable .Green

To extract the – BLUE 8Bits

Rotate Right >> 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0

 AND 0xFF

 variable .Blue

1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 1

1 1 1 1 1 1 1 1

1 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 0

18

The flowcode 7/8calculation to do this is as follows for the ON colour change: -

.ON_colour = ON_flash

.Red = .ON_colour & 0xff

.Green = (.ON_colour >> 8) & 0xff

.Blue = (.ON_colour >> 16) & 0xff

The flowcode 7/8 calculation to do this is as follows for the OFF colour change: -

.OFF_colour = OFF_flash

.Red = .OFF_colour & 0xff

.Green = (.OFF_colour >> 8) & 0xff

.Blue = (.OFF_colour >> 16) & 0xff

Step 7 – Testing

Place the following in the Main start page.

When you run the program, you will see the little square change colour. Experiment

by changing the flashing colour and rate of the flash. You should see the colour picker

of the variable led1::color change along with the hexadecimal values.

When you have finished testing, delete everything the Main Start Page

19

Step 8 – Finishing Touches

Okay, this is what we have so far, not very interesting to look. What

we need to do is add something to identify what it is, when it is

placed in a project as a finished component. We can achieve this

by adding a label, that can be edited and a symbol of what it

represents, this would finish it off nicely.

Here’s how

Place the following onto the canvas from the 2D shapes – label (this is for TEXT);

Square (change size to 10mm x 10mm)

Place anywhere onto the canvas to suit your preference. It

should look something like this:

To make them editable, highlight each in turn, then from the drop-down menu, select

• Expose to top level for the - Label

• Expose to top level - image

When you have done that, it should look like this: -

20

Step 10 – Simple Flasher Configuration

To begin the Sub-Component configuration, we need to tidy everything up ready to

export the finish sub-component ready for use in any final Flowcode 7/8 component. I

will be showing you how to use this simple sub-component to make a flowcode

component for controlling a relay. Simple yes however, it will illustrate all the remaining

stages necessary to get everything working correctly.

This is what your Sub-Component project should look like: -

The Start Pages should have three macros: -

- Main

- flash_ON

- flash_OFF

The variables: -

- flash_time – Optional (this will be used for the next tutorial)

- ON_flash

- OFF_flash

- Led1::color (exposed to top level)

21

Open – Component configuration from the menu under file: -

This opens the following – Component Management

TAB - Standard

Set up:

- Author

- Cosmetic name - Simple Flasher

- Status - Development

- The ICON -

- Show in the component category – Misc

22

TAB - Advanced

Set Up: -

- GUID select edit; New then click OK (Keep a record for future reference)

- Lock Aspect ratio (optional)

TAB – Interface

For each of the listed Macros, using the

Types of Macro, from the drop down

menu set each macro as follows: -

- flash_OFF Simulation macro

- flash_ON Simulation macro

Please ignore that macro shown – led1_flashI

will be showing you this later in the next

tutorial. Its not needed just jet!

Click OK when done.

23

We need to export our simple flasher into our library that we set up earlier. To do this:

-

- select Export Component

- Navigate to your component library

Name your simple flasher component and select – OK to

save.

Just to check everything is ok, restart Flowcode and, using

the search option, you should be able to locate your

simple_flasher component under – Misc

If it is not shown after you have restarted Flowcode, check

that you have assigned a NEW GUID for your

sub_component.

24

The Next Tutorial – Build a Flowcode Component for

controlling a Device – A Digital Output (Relay) 7 RS232

Communication (433MHz TX/RX Modules)

Use the Sub-Component to Build Relay Component

A Digital Output Device

Now we can use our sub_component that we have

created to build an actual working component for

use in our projects – A Relay.

Yes, it’s a simple output device, but this next part of

the tutorial I will show you how to make add

connection pin to the sub_component that will allow

you to switch a relay ON or OFF in your projects.

RS232 TTL Communication

Further develop the Sub-Component to build a very simple

433MHz (ASK) transceiver. Tested to achieve good

communication of up 20 metres.

Or this LoRa 433Mhz RS232 E32-TTL-100

Longer Range module

1 Channel Relay Module 5 V/230 V

LED Relay for Arduino Raspberry p

by Geras-IT

https://www.amazon.co.uk/Geras-IT/b/ref=bl_dp_s_web_6930442031?ie=UTF8&node=6930442031&field-lbr_brands_browse-bin=Geras-IT

