
Page 1

© Matrix Multimedia 2011 MX009 - PID Control

PID Control
by Ben Rowland, April 2011

Abstract
PID control is used extensively in industry to control machinery and maintain working
environments etc. The fundamentals of PID control are fairly straightforward but im-
plementing them in practise can prove to be a uphill struggle. In this article we provide
a clear explanation of how PID control works and also a couple of Flowcode example
files designed to demonstrate how PID control is performed.

Requirements
Software:

• Professional licence of Flowcode v4 for dsPIC.

Hardware:

• EB064 dsPIC Multiprogrammer board

• EB058 gLCD Eblock

• EB022 Motor Eblock

Proportional Integral Derivative (PID) Control

When controlling a real system such as a motor there is normally an error between the speed you
wish to drive the motor and the speed the motor is running. This is due in part to the fact that the mo-
tor will take time to respond and also due to the fact that the load on the motor can change. Adding
some kind of feedback to the system allows us to essentially close the loop allowing us to control the
motor, read the feedback and then adjust our output signal to suit.

PID control is essentially a mechanism that is used to monitor and control a varying system, for ex-
ample when we are driving along in a car our brain is automatically tracking the distance from the
central line and adjusting accordingly. This type of system is known as a closed loop system as we
do an action such as turn the steering wheel then monitor the response by looking at the road and
then adjusting the steering wheel if necessary.

Example of closed loop system using PID

Page 2

© Matrix Multimedia 2011 MX009 - PID Control

The basic PID function is basically a sum of all three types of error.

Output = Pout + Iout + Dout

An example of the PID equation using three previous error readings would look like this.

Output = P * (Error – Prev_Error + (Error / I) + D * (Error – (2 * Prev_Error) + Prev_Prev_Error))

The PID equation is used a lot in control systems as it takes into account three types of feedback er-
ror.

• Proportional error – This is the simplest form of error and simply tells us the difference between
the setpoint and the feedback signal.

• Integral error – This is used to correct any end result offset that the proportional control cannot
reduce due to gain limitations by creating a rolling average of previous errors.

• Derivative error – This uses multiple errors over time to monitor the rate of change and try to

predict what is going to happen next.

The above diagram contains some terms, here are the definitions:

Setpoint – Desired output of the system.
PID Controller – System monitoring setpoint and feedback eg the brain or a microcontroller.
Output –The modified output from the controller.
Process – The action that is happening eg driving along the road.
Disturbances – Outside influences on the system eg turns in the road.
Sensor – A way of measuring how far off our setpoint we are eg our eyes.
Feedback – The control signal fed into the controller from the sensor.

To calculate the errors in the above equation we are basically subtracting the sensor feedback from
the control setpoint. To allow this to work effectively there has to be a way of allowing the feedback
signal to be equal to the setpoint. This way when both the setpoint and the feedback match the error
is zero.

Here is a worked example of the above equation.

Setpoint = 5
P = 2
I = 6
D = 1

(Step 1)
Feedback = 0
P * (5 – 5 + (5 / I) + D * (5 – (2 * 5) + 5)) = 10

At step 1 we are far from the setpoint so we have a large output to try and speed up the process to
get to the setpoint.

(Step 2)
Feedback = 1
P * (4 – 5 + (4 / I) + D * (4 – (2 * 5) + 5)) = -2.66

At step 2 we are predicting that the setpoint will shortly be reached so we are backing off the control
signal slightly from 10 to 7.34.

Page 3

© Matrix Multimedia 2011 MX009 - PID Control

A reactive PID system should aim for a little overshoot before settling down. Rule of thumb values are
that P is roughly equal to I and D is roughly one quarter the value of I.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

Example unstable system using P=8 I=4 and D=4

Example stable system using P=2 I=6 and D=1

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

A system controlled by PID requires tuning to make the system stable and achieve the fastest possi-
ble response to the control signal. To aid in this we have generated an Excel spreadsheet that simu-
lates a second order system such as a DC motor. Different values for the P, I and D control values
can be tested and the starting point and setpoint can be altered for any given situation. It is normally
fairly simple to see if a system is going to respond well or become unstable as long as you have the
system characteristics modelled correctly.Tuning a system can often be fairly hard to do without
loads of trial and error. There are ways to allow the PID system to tune itself but these systems are
often said to be teetering on the unstable side and the slightest unpredicted error can cause lots of
problems.

(Step 3)
Feedback = 2
P * (3 – 4 + (3 / I) + D * (3 – (2 * 4) + 5)) = -1

At step 3 we are nearing the setpoint so the control signal tries to back off more to avoid overshoot-
ing the setpoint and changes from 7.34 to 6.34.

Page 4

© Matrix Multimedia 2011 MX009 - PID Control

Now that we can simulate a PID control signal how about applying it in practise. To do this I am us-
ing a new style NXP Lego DC motor but the same method can be applied to just about any system
that can be effected by the surroundings with outputs that can be measured, e.g. room temperature,
motor speed, motor position, generator output, voltage charge pumps etc.

The next example shows how to apply the PID algorithm by using actual feedback to control the error
signals rather than using a simulated error. To start you first need to determine the range of your
control signal. I will be using PWM to control the speed of a Lego DC motor. The PWM input is a byte
so this can go between 0 and 255 where 0 is the motor is stopped and 255 is the motor at full speed.
To feed error back into the system I will be using the opto-encoder fitted inside the motor to measure
its speed. Again I will let the program pick random setpoints and plot the response of the algorithm
onto the graphical display. The running program controls the motor and will try to maintain a steady
speed to match the setpoint even if the load on the motor changes significantly.

The feedback signal from the Lego motor is fairly good but not amazing and therefore the control of

the motor is not perfect, though
obviously far better than using
normal open loop control. Using a
shaft encoder with a greater reso-
lution would allow for a better mo-
tor response. To get the encoder
feedback to approximately equal
the setpoint to generate a 0 error
I have measured the encoder
response when the motor is at full
speed. Doing this I found that a
speed of 255 represented an en-
coder frequency of around 125
cycles in 25ms. Therefore to nor-
malise the feedback signal I sim-
ply multiplied it by 2 before calcu-
lating the error and then plugging
this into the PID equation which
runs every 25ms.

A: Example stable system using P=2 I=6 and D=1
B: Example stable system with ringing using P=6 I=6 and D=2
C: Example unstable system P=6 I=3 and D=2

A B C

The first example uses my integer based PID calculation to simulate this second order system on hardware. To

do this I am using the EB064 - dsPIC and PIC24 Multiprogrammer E-block along with a EB058 graphical

LCD. The program creates a random setpoint between 0 and 100 which it draws as a red line and then plots the

response of the PID algorithm. Here we can see the differences between our excel calculation and our micro-

controller based integer only calculation. It should be possible to see that the discrete sampled system is a lot

more prone to becoming unstable due to fractional errors in the equation.

Page 5

© Matrix Multimedia 2011 MX009 - PID Control

Further reading

Below are some links to other resources and articles on related subjects, and technical documenta-
tion relating to the hardware used for this project...

Flowcode: http://www.matrixmultimedia.com/flowcode.php
Eblocks: http://www.matrixmultimedia.com/eblocks.php

Learning Centre: http://www.matrixmultimedia.com/lc_index.php
User Forums: http://www.matrixmultimedia.com/mmforums
Product Support: http://www.matrixmultimedia.com/sup_menu.php

Copyright © Matrix Multimedia Limited 2011

Flowcode, E-blocks, ECIO, MIAC and Locktronics are trademarks of Matrix Multimedia Limited.
PIC and PICmicro are registered trademarks of Arizona Microchip Inc.
AVR, ATMega and ATTiny are registered trademarks of the ATMEL corporation.
ARM is a registered trademark of ARM Ltd.

The examples in this article were written for the dsPIC30F2011 device that comes as standard with
the EB064 PIC24 and dsPIC E-block. By using the import file menu the programs should work
equally well with other versions of Flowcode and other devices. The PID algorithm also could be im-
proved by using floating point calculations rather than integer based calculations though this would
have an impact on the speed of the PID routine as well as the amount of code that is generated. In
practise the integer based PID algorithm is working well.

This motor was taken from a industrial robotic camera and uses a tacho as the source of feedback
rather than an encoder. The tacho gives us an analogue signal that is proportional to the rotational
speed of the motor. So to monitor the error from a motor like this a potential divider circuit would be
used to get the tacho signal as close as possible to the control signal when read in through an ADC.

