— Remote Speed Control of DC Motors
idrilIX i
Knowledge Exchange

Abstract
In this fantastically thorough article, Jan explain s how you can use a PIC microcon-
troller to control DC motors remotely using Flowcod e. With detailed explanations on
all aspects of the procedure, this article isa mus t read for anyone wanting to remotely
control DC motors.

Requirements

Software:
* Flowcode v5 for PIC

Introduction

Remote control (RC) is used e.g. for model aircrafts, speed cars, ships and battery
powered, or life steam trains. The principal is simple. A remote control transmits e.g.
at 40 MHz the position of one or more handles to the receiver in the model. Depend-
ing on the position of the handles or rotation knobs a pulse of 1 to 2 msec with a rep-
etition of 50 Hz will become available in the model. These pulses can directly be
used for servo-motors, but must be ‘translated’ for DC motors into just forwards-
(aircraft propeller), or forwards/reverse- (model train, ship) speed control.

There are already commercial RC receivers with PWM outputs. But this article
shows the possibility to make the PWM from the 1-2 msec pulses.

A microcontroller can translate the RC duty time (5-10%) into a PWM of 0-100%.

There are small differences in requirements for the different type of models. Aircrafts
and speed cars need a very fast response and model trains and ships has more nat-
ural, slow response. On a receiver failure, the aircraft should fly on, while a speed
car should stop as soon as possible. Another failure problem is an overload current
of the motor used. What to do in that case, depends on personal wishes.

The choice of the electronic bridge drive for the motor is one with discrete electronic
parts and one with a commercial bridge drives BD6222 or the ADP3624. All does
have to fulfill the maximum physical dimension available in this kind of hobby mod-
els. The L298 dual full bridge drive, used on the Matrix Multimedia EB-022 board
has been rejected in the first place due to the fact that the dimensions are to large.

The microcontroller

The requirements for microcontroller in case of RC speed controlled Motor(s) are:

RC 1-2 msec pulses must be converted to PWM for motor speed control, see
figure 1.

The accuracy of the pulse length measurements must full the requirement of the
accuracy of the PWM percentages.

Motor control only ‘forward’ or both ‘forward and reverse’

Self learning maximum forward speed and, if applicable, maximum reverse
speed

Minimum power (PWM) required to start the motor (to overcome start-up friction)

Minimum dead time in cases of reversing the motor direction

Choice to leave the PWM unchanged or stop the motor during lost RC signals.

Microcontroller motor current sensing to prevent overload current or bridge tem-
perature, with auto shut-down and facultative auto restart.

Electrical requirements are:
Bridge drive to control the motor, see figure 2.
Preventing short circuit in the motor bridge drive (due to different time response
of MOSFETSs to falling and rising edges)

Main :
Get min
and max

position

Read EEPROM

min and max

[Y

Get min and max
position and save
them

position?

< Center = Center = Center
Set PWMI1 PWM=0 Set PWNM2
Set LED1 LEDs off Set LED2
Time delay
| l |

Interrupt:

Auto-shutdown,

Delav

®

stop

Figure 1. Sche-
matic Flowcode
for RC conver-
sion to PWM
signals.

Other requirements are:

1. The electronic board must be as small as possible. Therefore the 8-pins micro-
controller PIC12F1840 will be used.

2. With this 8 pins microcontroller a LCD reading, during testing, is not possible (to
less pins). RS232 is used to transmit the debugging data to another microcontroller
to show these data.

Additional 2 LED outputs are foreseen, used for forward/reverse lights, showing the
start-up procedure and making the auto-shutdown of the microcontroller visible.

Some details are:

1. Pulses are measured by means of Interrupt-On-Change (I0OC), both on rising
and falling edge of the pulse, on the RC-input pin.

2. No pulses during operation will leave the last PWM unchanged or stops the
PWM output.

3. At start-up: If no RC-pulses are available, PWM's will not start.

4. At the start-up procedure within 3 seconds, the minimum and maximum handle
positions have to be given. However, if the handle was not touched during this peri-
od, the previous values will be used, as stored in the EEPROM. Both forwards/
reverse LED’s will be on showing the start-up procedure.

5. After 3 seconds the actual handle position is the centre/neutral value. This will
be mostly the middle position for forwards/reverse motor regulations, or the mini-
mum position for forward-only motor regulations. There is no PWM at this neutral
position.

6. There are more possibilities to control a motor in a bridge with 2 PWM’s, see fig-
ure 2. Here we use the most simple method of one PWM continuously low and the
other with variable PWM. The reason to choose for this single PWM is the ad-
vantage that short circuit due to different rising times of falling and rising edges of
PWM'’s, can not happen in this set-up (see details in datasheet of microcontrollers,
chapter Enhanced PWM).

7. Both fast response of PWM on RC-input and slow response by filtering(damping)
is possible.

8. Due to frictions, all motors need a minimum of power to start. A minimum PWM
can be set, below the motor will not be activated. Pay attention: This value can be
different for different type of bridge drivers and for different oscillator frequencies.

9. In the 8 pins configuration, during debugging one LED output is changed into a
RS232 (Tx) output.

10.Maximum current or bridge temperature detection will disable power to the motor
at overload. Facultative auto-restart is possible or manual restart by means of re-
power the microcontroller.

FET FET
Driver Diriver
A [~ | Y
F'l L___ﬂ.p-’ | ﬁ {j | "“a__‘_
M=l
FET LLoad | FET
Driver 1 Driver
[| -y ﬂ
PxB B | | <

Figure 2. Full bridge motor control (load=motor). P1A will be low and PWM on P1B, or visa versa,
see e.g. datasheet 16F1939 [16F1939].

Timers and Accuracy

There are two types of RC control handles:
Continuous change with mostly a spring which brings the handle always back to
a ‘neutral’ position.
Change of the handle in small steps, 24 total. In this case the spring has been
replaced by a rib.
Continuous change has to be digitalized. The number of steps in 2) is accurate
enough for the applications used, that means 24 step full range. Thus in the forward-
only mode an accuracy of 24 steps and in the reverse/forward mode 12 steps each.
The difference in pulse duty of the RC input is 2 msec — 1 msec = 1 msec. That
means 1 msec has to be measured with an accuracy of 1/24 which is about 4%. The
timer used, should thus have a period of 1 msec x 4% = 40usec, or a frequency of
about 25 kHz.

The Timer0 and Timerl are to slow, which means we have to use Timer2. That cre-
ates a problem, because the fast Timer2 is standard used for PWM. That means no
standard Timer is available. But the RC pulse times have to be measured only rela-
tive compared to the maximum value. That means any time unit can be used. The
quickest timer is a while statement with a counter which increases one count each
loop. | call this Timer9. The assembler shows that this loop takes 14 steps which is
at 32MHz, 14 x 4/32 = 1.75 usec. This is equal to 570 KHz for Timer9. Using this
Timer9, 2 msec pulses will result in 1150 counts, which is equal to 2 msec/1150 =
1.73 psec/count. This is about 25 times better then required. Even with 16 MHz os-
cillator, the accuracy is about 10 better as required.

The calculation of the %PWM from the RC-period time requires 2 divisions, which
both can introduce a loss on accuracy, but this will be small for the particular chosen
kind of divisions, see Flowcode.

Later the possibility of stopping the motor if the RC signals are lost, made the Tim-
er9 loop much larger. This is due to an additional if statement to test if both the RC
pulse duration and the pulse time do not exceed limits. The while loop becomes now
42 program steps, which makes the Timer9 a factor 3 slower to 190 kHz (32 MHz
oscillator) respectively 95 KHz (16 MHz oscillator). This is still an acceptable fre-
guency.

Pulse Width Modulation

Integrating a PWM signal results in a controlled DC signal between 0 Volt and the
maximum voltage of the pulses. Motors works as integrators, so the microcontroller
just has to produce PWM to control the speed of the motor. Standard voltage/power
amplification of the microcontroller PWM is necessary for DC motors.

To control a motor, see figure 3, there are 2 PWM'’s necessary. The most simple so-
lution is with one PWM continuously on ‘low’ or ‘high’ and the other PWM varying
from 0-100%. The intention is to have an electronic board as small as possible.
Therefore we will use a smallest 8 pins microcontroller PIC12F1840, but this one
does have only half bridge possibility. That full bridge can still be used, with our set-
up of one PWM fixed and the other PWM with variable duty percentages.

PWM
controller

Figure 3. Full bridge motor control with shunt for current control.

Standard Timer2 is used to produce PWM signals. One motor drive used BD6222,
see later, requires PWM between 20-100 kHz. At 32 MHz oscillator and 8 bit PWM
accuracy this is possible at 31.25 kHz. Using discrete MOSFET's, lower frequencies
will work better, but below 20 kHz there is a possibility that system can be heard (for
not to old people). For reasons given later on, 16 MHz is used in case of bridge
drive with discrete components is used. The PWM frequency will be about 15.5 kHz.
The requirement for the ADP3624 bridge driver is that the input pulses are steep as
possible. But this is a general requirement, also applicable for all kind of bridge driv-
ers. There ARE no parameters in the microcontroller used to influence this.

Securities

Disabling PWM'’s at start-up

This is a simple software security e.g. not to start the motors at the start-up proce-
dure of the microcontroller.

Maximum motor-current / bridge-temperature sensing

By measuring the voltage over the shunt resistance it is possible to control the maxi-
mum allowed current through this shunt and thus through the motor, see figure 3.
There are 2 possibilities to measure this voltage: 1) with an Analog-Digital-Convertor
(ADC) or 2) with the voltage comparator. The requirement is that this should be
done at the fastest response as possible, which is the voltage comparator.

comparator
C1

shunt |

voltage |7 _—

- PWM S RAZ2
‘4— RA5

Vref Auto- Auto ‘ select

Shutdown |\ Set output
duty %

Figure 4. Control of the PWM with left the auto-shutdown scheme and at the right side the output con-
trol between two pins.

The inputs of the voltage comparator in the microcontroller are the shunt-voltage
and an internal reference voltage. This references voltage can be set to the wanted
motor current (shunt-voltage). An auto shut-down of both PWM’s will prevent the
motor for damage. Facultative, an auto restart can be used. Later on it was found
that very short peak currents can be present, with an average current far below lim-
its. To prevent auto-shutdown of the PWM in these cases, an external RC circuit
can be placed in the sense line. To prevent damage of the input of the comparator
by a shunt voltage over the 5 Volt, a zenerdiode of 5.1 Volt must be used parallel to
the comparator input.

The bridge driver ADP3624 has an external output for warning for to high I1C temper-
ature. The output can be used as sense input. Any reference voltage <5V will do in
this case. Remark: A reference voltage = OV is used in the Flowcode to disable the
auto-shutdown procedure.

Motor induction and back EMF

Any speed change of a motor will introduce an EMF and can result in peaks below 0
Volt and peaks above the power supply. Depending on the way of PWM'’s used, re-
verse voltages over the MOSFET are possible. To prevent damage of these
MOSFET's fast Schottky diodes must be placed parallel to the MOSFET’s. Most
MOSFET does have these diodes internal, but check the datasheet. To overcome
the EMK problems a 10 puF ceramic and 100 nF capacitors should be placed over
the motor power-supply, placed as close as possible to the motor bridge drive. An
additional 100 nF ceramic capacitor has to be placed over threads to the motor, as
close as possible to the motor.

Noise and Filtering

The setup as described above, is a response of the PWM on change of the RC time
as quick as possible.

However, noise on the RC input, can introduce unwanted changes in PWM’s.
Therefore there are 2 filtering possibilities introduced in the Flowcode.

a) No Filtering

In the main program, the RC-time will be measured and the PMW % will be set.
Getting the RC-time takes 150 program steps and the forward or reverse loop, to
calculate the percentages PWM, takes about 450 program steps, total 600 pro-
gram steps. That takes 600 x 4 /32 = 75 psec at 32 MHz or 150 psec at 16 MHz
oscillator. The repeating rate of the RC signal is 50 Hz or 20 msec. That means
the program loop time will be fast enough to read each RC pulse in sequence.
Of coarse only if no filtering is used.

b) No Filtering

Moving average (MA) can be chosen for the RC-input pulse times. A simple
kind of moving average is given on the Matrix Multimedia Forum[Matrix Multi-
media]. That is at each iteration a particular part of the moving average will be
exchanged with the same part of the new value. In formula:

MA_new= MA_old - MA_old/k + NEW-Value/k
with k= any natural number >0

In Flowcode only the following k-values are used:
k=2™M=1,2,48,16 with n=0,1,2,3,4
k=1 (n=0) means no filtering.

The reason is that with these k-values a division is a simple roll right action.
The response of the MA depends on the k-value. Large k-values make MA

‘slow’. The number of iterations necessary to reach the ‘end’-value within the
wanted accuracy is given in table 1.

of steps Accuracy

k n 99% 99.9%
No filtering 1 0 0 0
Small damping 2 1 7 10
Medium damping 4 2 16 23
Strong damping 8 3 35 49

Table 1. The number of steps/iterations which are necessary to reach an accuracy of 99%
or 99.9%. No filtering with k=0, gives directly an accuracy of 100%.

E.g. a small damping with k=2 takes 10 RC-signals to reach an accuracy of
99.9% and that takes 10x 20x2 msec= 400 msec, which will be good enough in
most applications. This setting is advised to be used as start value. The factor
2 will be explained in noise chapter 4.

c) Filtering PWM

Here also a moving average can be used to make the response on the RC-
sender handle more or less smoother. It is advised to use no PWM filtering as
start value (k=1, n=0). The disadvantage is that the safety of 0% PWM when
reversing the motor direction will be lost when using moving averaging here.

d) HF Noise

In the first set up of the program only the RC time on (the pulse time) was
measured. But | found that I live in a surrounding with a lot of noise (40 MHz),
which lets change the motor speed and direction at random without any RC
transmitter. After changing the 40 MHz crystals the noise was reduced but not
completely gone. The result is that the motor speed is unpredictable in case
the receiver is out of range of the RC transmitter. And that made me to decide
that an additional criterion has to be introduced to select RC signals from
noise.

The RC frequency is rather constant (about 50 Hz), so the period time be-
tween 2 rising pulses should be within a small range. Measuring this period
time at the start up and define a range in which all other period times has to fall
for a pulse to be recognized as RC-pulse. This improved the working of the
motor speed control. The consequences are that not all RC pulses but only the
even (or uneven) RC pulses will be measured, thus with 25 Hz maximum.

e) Loss of signal

A special case is that the receiver gets out of the range of the transmitter. With
airplanes and model train it is wanted that the motor speed will not change.
However, with cars it is wanted that the car stops as quick as possible. Both
options are available. Especially in the last case it is strongly advised to set the
RC transmitter on before powering the receiver and microcontroller.

Special Registers

Of course the main program is in Flowcode (version 5). But there has to be set some
special registers as given in table 2 below and in details explained in the annexes. C
-codes are used both in C-code component macro as in interrupt procedures.

Register Name Abbr, Remarks Used in macro Page
Annex | Set Internal Oscillator Frequency

Oscillator Control Regis- | OSCCON Settings for 16 and 32 Main and Init macro 61
ter MHz internal oscillator
Oscillator tuning register | OSCTUNE Set frequency to maxi- Init macro 63

mum

Annex Il Interrupt-On-Change of RC pulses

Interrupt Control Regis- INTCON Both global interrupt Interrupt in 83
ter enable and 10C inter- Get_RC_Time macro

rupt enable
Interrupt-On-Change IOCAP Rising edge interrupt — | Interruptin 120
PortA Positive Edge on-change of input RA3 | Get_ RC_Time macro
Register
Interrupt-On-Change IOCAN Falling edge interrupt — | Interrupt in 120
PortA Positive Edge on-change of input RA3 | Get RC_Time macro
Register
Interrupt-On-Change IOCAF Interrupt-on-change Interrupt in 120
PortA Flag Register flag of input RA3 Get RC_Time macro

Annex Il Alternate PWM output pins

Alternate Pin Function APFCON Change PWM output Init macro 112
Control Register port between RA2 and

RA5

Annex IV Current limit control

Voltage Reference Con- | DACCONO Reference voltage ena- | Init macro 144
trol register 0 bled/disabled and de-

fines the comparator

inputs used
Voltage Reference Con- | DACCON1 Set the reference volt- Init macro 144
trol register 1 age
Comparator C1 Control CM1CONO Comparator C1 ena- Init macro 157
Register 0 bled/disabled and a lot

of other settings
Comparator C1 Control CM1CON1 Selection IN+ and IN- Init macro 158
Register 1 of the comparator
CCP1 Auto-Shutdown CCP1AS Auto shutdown ena- Interrupt in Init macro | 208
Control register bled/disabled of PWM
Enhanced PWM Control | PWM1CON Auto restart enabled/ Init macro 209
register disabled of PWM

Table 2. Registers of PIC12F1840 used. Page numbers as used in datasheet DS41441B of Microchip
(2011) [Microchips]. Details are given in the annexes.

Electronic schemes

There are 3 types of bridge drive used. One only with discrete components and one
with a commercial bridge driver BD6222 (maximum 2 A and 18 V) and the ADP3624
(maximum 4A and 18V). The figure 5 shows the microcontroller part and Figures 6
the 3 bridge drivers. The 3 figures 7 show a picture of the 3 PCB respectively.

1-2 mesac

2 msec
Blue FLZ ' ' RLin
ECF@U FOHHQCtOF +12v 1 =Y Black [T |Whits
cwer in . SERE o
L —l
c1 +__C6 ca =%
— L 1
PL1 100n - [Teop[loon —‘71%
= EC in =

|C4
; FICTZFTH4a -

b —— R

2 1 v cld Vas & 1@ @A
2 z Fas RABDaTE
* 3 F s Fal #CLK & =WIN]
: + Raz vop RAZ 5

Vpp

éﬂ*l"* i
5,

Clk / Zenlse
Data / RSkz2

PWM 2 Pt 2
Sense
. LED F / RE232 Sense
GHND pin - 0 R
for testing —e N0
Bl 4 Green
SCcr e connecitor

= facultative

Figure 5. The PIC12F1840 microcontroller with power supply, RC-input and sense-input(shunt volt-
age), PWM1-, PWM2-output, 2 LED’s output, RS232 output and the In-Circuit Serial Programming
(ICSP) connector PL10. On duty PL10 is connected to PL11. C5 is optional. Connections PMW1,
PWM2 and Sense continue in figures 6A and 6B.

Black oz

motor
Screw connecter
—= ()
T FL3I L&@8@n
=] o7
1@@on | 18uR R oz o1 R4
47 B a
) S 471
ceramic ! -y o
R Rt
o o o D
Rz H —
a ‘H@uz Co+ U3 @1 e
L T = L T - i
47 b= D 18k o 5
Rz [,
PWM 1 — 1 5 I"f:]—zg G4 03 KE B
47
2 a
FWM 2
Sence
Sense
1k R@
e L D Shunt
1@0n = g g
5,1 I Ohm
ML
— = 0D G
- Q1 end Q2 All top Views
IRF 49@%

SUR7SFPB2-07-EZ

C
IRF 27@7
IRF 37Q@E

03 and Q4

_—
m—

L
o ES17 @
=

JZ anmd U3

= facultative

Figure 6A. The motor bridge driver with 2 power n-MOSFETs (Q3 and Q4) at the lower (0V) side and
2 power p-MOSFETs (Q1 and Q2) at the high voltage side. The gate voltages of the p-MOSFET are
produced by the low power BS170 n-MOSFETSs. The voltage over the shunt resistance is proportion-
al to the bridge current. Peak voltages can be integrated by the R1C2 circuit and the Zener diode of
5.1V prevents damage of the microcontroller for a shunt voltage over the 5 Volt. Capacitor s C7 (10
MUF ceramic) and C3 (100 nF) are essential. R6 is used during testing without a motor. Connections
PMW1, PWM2 and Sense continue in figure 5.

BElack

motor
T 12V screwW connector
: - 70
__J
FLZ 3
C1 7 F & 1B@n
p— j— :'_4
1@2dn 1@y 10k
ceramfic
BEL&Z222
1 raf =
FWM 2 — ouTL BD&222
3 FIM
4 [Ns}
Hl
RIM
PwM 1
& ouT2
7 Vee
¥ sSense input not used

QD

Figure 6B. With 2A bridge driver BD6222. Due internal safety control no external current control is
necessary. Connections PMW1, PWM2 continues in figure. (No sense input)

Elack
Sscrew connector motor

= T

PL3 3
—H
1@k
+12W

PWM 1 — 1 ADP 3624 e
FlWM 2

FOIC_Epins
Sense Temp warning

c1 - L ¢c7
12@n 1QuF

ceramic

G0

Figure 6C. . With 4A bridge driver ARP3624. Instead of current control, temperature warning is used
to control. Connections PMW1, PWM2 and Sense continue in figure 5.

]::Il:j M.;;.t.;}r 12F 1840

ICSP
Junpers

D Mlotor 12F 1840

ICEP

T ErS

ED6222

12%

Figure 7B. PCB with BD6222 bridge driver. Board size is 35.5x38 mm

RC-in

ICSP
jumpers

ADP3624

Figure 7C. PCB with ADP3624 bridge driver. Board size is dimensions are 26.5x 38.2 mm.

The electronic schemes show the 8-pins microcontroller PIC12F1840 with the motor
bridge driver. In Figure 6A, the n-MOSFETs (Q3 and Q4) are selected on minimum
internal resistance, maximum current and minimum gate voltage Vgs necessary to
open the MOSFET completely. This Vgs should be maximum 4 Volt. IRF3707 and
IRF3708 are good candidates. p-MOSFETs (Q1 and Q2) are selected on minimum
internal resistance and maximum current. IRF4905 and SUP75P03-07-E3 can be
selected. And the n-MOSFETs (U2 and U3) are selected on minimum internal re-
sistance and minimum gate voltage Vgs necessary to open these MOSFET com-
pletely. This Vgs should be maximum 4 Volt. The best is the BS107 MOSFET.

Due to reverse EMF of the motor, all MOSFETSs should have internal Skottky safety
diodes.

The microcontroller will give PMW 1 continuously on 0V and PWM2 pulses between
0-100% or visa versa. PWM1 will results in no drain-source currents for U2, Q2 and
Q3 and a current through U3, Q1 via the motor and Q4 during PWMZ2 is high. LED2
will be ‘on’.

The shunt resistance can be chosen yourself. The RC circuit (R1C2) is optional. Do
not use this integrating circuit if you expect rarely high currents which need auto-
shutdown without auto-restart. Use the RC circuit if you intent to use the auto-restart.
The RC time will be at least the time between the shut-down and auto-restart. The
zener diode is necessary to protect the microcontroller input. And the resistance R6
parallel to the motor is used during testing of the bridge without a motor. This re-
sistance can be in place with the motor connected. The shunt resistance should be
chosen so the voltage over the shunt will be <1 Volt. This is necessary to the fact
that the n-MOSFET’s are fully open with a Vgs of 24 Volt. Below 1 Ohm, it is hard to
get small resistances. It is possible to make these shunts yourself by means of re-
sistance wire , see annex VIII.1.

High frequency can be present on the RC-input, e.g. if the RC-sender is close to the
RC-receiver. In that case it can be necessary to filter this high frequency with e.g. a
small 10 nF capacity (C5).

In-Circuit Serial Programming (ICSP) is used by means of the J5 connector of the
EBO006 board and the PCB board. There is a switch to choice between the program-
ming and operation mode.

[
W - F
ICSF E“:
e 5w
i et
[2
t?as B
1 5 BY 1
: .
g: :*x ; 5
: e w o e
Fi—— L
o "ﬁ[
T remdves
26 D
: remi -
£ K:::%
- L
N
P pm
0 G w | | ! ! ! 1l rmnza
A HELR ¢ Wpp b | -1 L vER
5 CIPATTTY ; =
T T B Ik A o L] ™
= - e =
Ead FHE L % [= Emn
EEOGG e
Besrd Femote Speed Control

af OC Motor

Marmark i Mulms Vd4ives beiore Vap

Figure 8. ICSP with switch between programming and operation mode.

The microcontroller has only 8 pins. The choice of the pins, like PWM output, RC
input etc., is given in an Annex VI. An external master clear MCLR is not possible.
MCLR should be realized during powerup. Programming on the board is possible
(ICSP). It is advised to set in the PPP options to raise Vdd before Vpp (PPP options
can be found under the ‘options..” knob of the chip configuration window). During
operation PL10 should be connected to PL11 with 5 jumpers.

YWdd switching options:
[w Manual overide:
(" Do not manipulate %dd
* RaizeYdd befare Wpp
(™ Raize Wdd After Wpp

Figure 9. Recommended PPP-settings in case of ICSP (programming on board)

The discrete component setup is shown in figure 6A and 7A. The size of the board
is as small as possible 35.5 x 38 mm. The advantage of this setup is that it is easy
to produce yourself. The disadvantage is the possible presence of high peak cur-
rents at the start of each PWM. To prevent that as much as possible, lower PWM
frequencies are advised. Remark: These peak currents are mostly damped by the
presence of the 10 uF ceramic capacitor.

If the bridge driver BD6222 is used (figure 6B and 7B), nearly all components of fig-
ure 6A will be replaced by this bridge driver. | even deleted the current sensing, be-
cause the IC itself takes care of that. The advantage of this bridge driver is that the
motor control is optimized. The frequency of the PWM should be between 20-100
kHz, which is possible with and internal microcontroller oscillator of 32 MHz giving a
31.25 KHz PWM frequency. A disadvantage can be that the BD6222 is a smd com-
ponent. A simple way to solder these smd’s is described in annex VIII.2.

The 5Volt regulator is oversized for the microcontroller itself. But power can be
used by other servo motors also connected to the RC-receiver.

The motor should have a capacitor of 100 nF as close as possible to the motor. Due
to reverse EMK of the motor, in both setups a 10 uF and 100 nF, both ceramic ca-
pacitors, should be placed over power supply of the bridge driver and as close as
possible to this bridge driver. This capacitor is commercial only available as smd but
soldering is no problem.

Working model

The reason to develop this motor bridge driver was that even commercial bridge
driver were blow up after a while. That makes me thinking that | can do it myself bet-
ter. And is it not easy to transform a RC pulse between 1 and 2 msec to a PWM
from 0-100%? Developing both software and hardware took much more time then |
expected. Time will learn if my setup is better. | learned a lot in the meanwhile, that
can help to overcome new problems.

Three PCB boards are described. The third one with the bridge driver ARP3624 is
advised. The PCB board is the smallest and the drive has an over-temperature
sense output.

The motor is part of the LGB model train (gauge | = 45 mm, scale G about 1:20)
powered with 12 NiMH cells and with a remote control (RC) 40 MHz receiver. The
motor uses about 200-300 mA. If | stop the motor at full speed about 800 mA is
used. Of coarse peak currents can be much higher.

Summary

In the article the software and hardware development of a Remote speed control of
DC motors is given. One of the requirements is that the electronic board is as small
as possible. That is the reason that the 8-pins Microchip microcontroller
PIC12F1840 has been chosen in combination with a commercial bridge driver
ARP3624. The software has been made by means of Flowcode 5 of Matrix Multime-
dia. The initial values of a lot of parameters can be changed yourself. This software
will be available on Matrix Multimadia Forum and/or Elektor Forum. On request C-
code or hex file will be available. A movie about this project is available at my web-
site [author].

Acknowledgement

Many people have advised me during the development of these RC motor speed
controls. Especially all the contributors of the Matrix Multimedia Forum [Matrix Multi-
media] and the Elektor Forum [Elektor Forum]. Without them the development of re-
spectively the software and hardware was not possible. Theo van Hoof [Theo van
Hoof] thanks for your advices on the moment | intended to stop.

References

Microchips, MOSFET, MOSFET drivers. ceramic capacit ors and resistance
wire

Microchips:

PIC12F1840 8 pins 8-bits pins Microchip microcontroller, as used in this project
PIC16F1939 8 pins 8-bits pins Microchip microcontroller e.g. bridge drive figure
MOSFETSs:

IRF3707 n-MOSFET 30V, 59A, TO-220

IRF3708 n-MOSFET 30V, 62A, TO-220

IRF4905 p-MOSFET -55V, -74A, TO-220

SUP75P03-07-E3 p-MOSFET -30V, -75A, TO220AB

BS170 n-MOSFET 60V 0.5A TO-92

MOSFET Drivers:

ADP3624ARDZ 4A MOSFET drivers with non-inverting inputs, SOIC

BD6222 bridge driver 18V 2A HSOP25 (smd)

Ceramic capacitors:

AVX-SE045C106KAR 50V, 10 pF ceramic capacitor

Resistance wire

e.g. 5.65 Ohm/m (isachrom 60) at www.conrad.com number 421201 (or Conrad at
your country)

Matrix Multimedia:
http://www.matrixmultimedia.com/mmforums/viewtopic.php?f=29&t=8921
Comparator interrupt
http://www.matrixmultimedia.com/mmforums/viewtopic.php?f=29&t=7792
Moving average

Elector Forum
http://www.elektor.nl/forum/forum/algemene-forums/microcontrollers/directe-
aansturing-mosfet-door-microcontroller.1985092.lynkx : on the PCB (in Dutch)

Theo van Hoof

http://www.theovanhoof.be/

http://www.modularcircuits.com/blog/
http://modularcircuits.tantosonline.com/blog/articles/h-bridge-secrets/

Author

jan.lichtenbelt@lichtenbelt.nl : Jan Lichtenbelt
http://treintjes.smugmug.com/Other/Electronica-Electronics : this project
http://lichtenbelt.com/jan/trein/kleintjestoom.htm : garden rail

Appendix

Set Internal Oscillator Frequency

The internal oscillator frequencies used are 16 MHz and 32 MHz. In the Oscillator
Control Register OSCCON, the Internal Oscillator Frequency Select bits IRF <6:3>
are 1111 for 16 MHz, or:

osccon=0x78; /1 16 Mhz osc.

For 8 MHz IRF<6:3> should be 1110. To multiply this frequency with 4 to 32 MHz,
the Software PLL Enable SPILLEN bit 7 should be 1 (this makes the frequency set-
ting independent of PLL value in the config word), or:

osccon= 0xFO; /1 32 MHz osc.

These frequencies can be set, facultatively, to a maximum value with the Frequency
Tune Bits TUN <5:0> in the Oscillator Tuning OSCTUNE register. The maximum is
reached for TUN=011111, or:

osctune=0x1F; /l maximum frequency

Interrupt-On-Change on RC pulses

To measure the period time of the RC pulses a timer counter is used. This times will
be start on rising edges of the pulse and the counter ends at the falling edge of the
pulse.

Remarks:

a. There is a special timer used (called Timer9), see chapter Timers and Accuracy.
b. Here we use the procedure to set (st_bit) and clear (cr_bit) special bits of a regis-
ter instead of the whole register as done in Annex I.

1. To enable this special interrupt, both the Global Interrupt Enable GIE bit 7 and the
IOC enable bit3 should be set to 1 in the Interrupt Control Register INTCON, or:
st_bit(intcon,GIE); Il global interrupt enable
st_bit(intcon,IOCIE); // enable IOC (interrupt on change)

2. We start first detecting the rising edge of the RC pulse. Therefor one of the Inter-

rupt-On-Change (I0OC) PortA Positive Edge bits IOCAP<5:0> has to be set in the

IOC PortA Positive Edge register IOCAP, and because we use RA3 as IOC port,
st_bit(iocap,IOCAP3); /I rising edge RA3

with the number 3 for bit 3 and RA3.

3. The next step is to reset the interrupt flags and enable this I0C interrupt. If a IOC
interrupt occurs the IOC Flag will be set both for the IOC Interrupt Flag bit IOCIF in
INTCON and for that particular port in the IOC PortA Flag Register IOCAF. After re-
setting these flags the interrupt will be enabled for a positive or negative pulse
(depending on setting IOCAP or IOCAN). At last we has to set the I0C enable 10-
CIE bit 3 in the INTCON register (see also point 1):

cr_bit(intcon,IOCIF); /I reset interrupt flags for all RA's

cr_bit(iocaf,IOCAF3); // reset particular interrupt flag RA3

st_bit(intcon,IOCIE); // enable IOC (interrupt on change)

4. As soon as we detected the rising edge, we stop this procedure and replace it
with detecting on the falling edge with:
cr_bit(iocap,IOCAP3); // disable rising edge RA3
st_bit(iocan,IOCAN3); // set falling edge RA3
with IOCAN the equivalent of IOCAP but for falling edges.

5. Stopping this interrupt can be done simple by clearing/disabling the global inter-
rupt GIE bit and the IOC interrupt bit in INTCON:
cr_bit(intcon,lOGIE); // disable global interrupts
cr_bit(intcon,IOCIE); // disable IOC (interrupt on change)

6. The interrupt handler will be:
Enable Code:
st_bit(intcon,GIE); Il global interrupt enable
st_bit(iocap,IOCAP3); /I rising edge RA3
cr_bit(intcon,IOCIF); [/l reset interrupt flags for all RA's
cr_bit(iocaf,IOCAF3); // reset interrupt flag RA3
st_bit(intcon,IOCIE); // enable IOC (interrupt on change)
Diable Code:
cr_bit(intcon,IOGIE); // disable global interrupts
cr_bit(intcon,lIOCIE); // disable IOC (interrupt on change)
Handler Code:
if (iocaf.IOCAF3) I/l if interrupt RA3 fla g is set

FCM_%n(); Il call selected macro
cr_bit(intcon,lOCIF); // reset interrupt flag for all RA's
cr_bit(iocaf,IOCAF3); // reset interrupt flag for RA3

}

The interrupt macro used

In this IOC_Interrupt macro the detection of rising edge will be exchanged with the
detection of falling edge and visa versa. The interrupt counter9 is stored into the
variables Temp (pulse repetition period time) and RC_Time_On (pulse time)

if (locap.lIOCAP3) /I rising edge RA3 ?

{
cr_bit(iocap,|IOCAP3); |/l disable rising edge RA3
st_bit(iocan,IOCAN3); // set falling edge RA3

FCV_TEMP= FCV_INTERRUPT_COUNTERSY; // save interrupt counter9

FCV_INTERRUPT_COUNTER9=0; Il reset interrupt counter9
}
else // falling edge

{
cr_bit(iocan,IOCAN3); /I disable falling edge RA3
st_bit(iocap,IOCAP3); /I setrising edge RA3

FCV_RC_TIME_ON= FCV_INTERRUPT_COUNTER®9; // save interrupt
counter9

}

8. Change falling edge detection into rising edge detection
After the detection of the pulse period time Temp, the falling edge detection will be
changed into rising edge detection:
cr_bit(iocan,IOCAN3); /I disable falling edge RA3
st_bit(iocap,IOCAP3); /I setrising edge RA3

Alternate PWM output pins

The PWM output CCP1/P1A is standard on the RA2 pin. Using the Pin Select
CPP1SEL bit 1 in the Alternate Pin Function Control Register APFCON, the output
can be set to RAb.

apfcon= 0x00; // PWM output to RA2
or

apfcon= 0x01; // PWM output to RAS

Current/temperature limit control

To control the current through the motor, the voltage over a shunt will be compared
to a reference voltage. This comparator shuts down the PWM output if the shunt
voltage is to large. Facultative an auto restart can be used also. See figure 4 with
the schematic set up. The external component, the shunt resistance can be chosen
freely, dependent on the expected currents and the possible reference voltages.
However the shunt voltage may not be larger then 1 Volt, leaving 4 volts for source/
gate voltages. Reference voltage, comparator, auto-shutdown and auto-restart are
parts of the microcontroller. This sense input can be used not only for currents limit
but also for any other voltage sense, like e.g. the temperature warning signal (high)
as output of the ADP3624 bridge driver.

a) Reference Voltage for the Comparator

The positive and negative voltage of the Digital-Analog-Convertor(DAC) must
be selected for the reference voltage. This DAC must be enabled. This all is
done in the Voltage Reference Control Register 0 DACCONO.

The DAC Enable DACEN bit 7 must be set to 1,

The DAC Positive Source Select DACPSS bits <3:2> will be 00 for V+=Vvdd

The DAC Negative Source Select DACNSS bit O will be O for V-=Vss

daccon0= 0x08; // DAC enabled, V+ =Vdd and V- = Vss

With 5 DAC Voltage Output Select DACR bits <4:0> of the DAC Voltage Refer-
ence Register 1, the output voltage of the DAC can be selected between 0 and
1/2V+ in 16 steps. With V+ = 5V and V-=0, Vref= 5*DACR/32= 0.15625xDACR
Volt.

daccon1=FCV_DACR; /I DACR gets a value in the INIT macro.

b) Comparator settings

Two registers are used for the comparator settings: Comparator C1 Control
Register 0 and 1, respectively CM1CONO and CM1CONL1. The first one to ena-
ble the comparator and selection in which case the output becomes high. The
second one to select the Input+ and Input_ of the comparator.
CM1CONO settings:

The Comparator Enable bit 7 C1ON is set to 1

Comparator Output Polarity Select CLPOL bit 4 must be set to 1

The Comparator Speed/Power Select C1SP bit 2 must be set to ‘normal’ =1

cm1con0= (CM1CONO & 0x40) | 0x94;
I/l enable comparator normal mode
/I and set polarity
/I & 0x40 = do not change bit 6
/Il | Ox94 = set bits 2,4 and 7

CM1CONO output (this is the flag for auto-shutdown the PWM):
Comparator Output C1OUT bit 6 will become high if the inputs of the
comparator V+ becomes < V- (with C1POL=1)

Used in Annex V Auto-Shutdown

CM1CONT1 settings:
Comparator Positive Input Channel Select C1PCH bits <5:4> =01 for DAC
(Vref) as input+
Comparator Negative Input Channel Select CINCH bit O = 0 connects
C1INO- pin or RA1 pin to Input- (this is the sense input)

cmicon1=0x10; // set comparator IN+ = Vref and IN- = RA1 (sense)

Auto-shutdown and auto-restart PWM

The auto-shutdown of the PWM is regulated in the CCP1 Auto-shutdown Control

Register CCP1AS. If activated the PWM will be set to 0%, while the program is still

going on. Rest of this auto-shutdown can be done by repower the microcontroller or

use the auto-restart procedure.

The CCP1 Auto-shutdown Source Select CC1PAS<6:4> should be 001= compara-
tor C1 output low (this text can be read on two way. But the shutdown occurs if
C1 output gets high)

ccplas= 0x10; // Select C1 output to trigger the auto-shutdown

The CCP1 Auto-Shutdown Status CCP1ASE bit 7 can be used in an interrupt. The
interrupt can be:
Enable code:
ccplas= 0x10; // Select C1 output to trigger the auto-shutdown
Disable code:
ccplas= 0x00; // auto-shutdown is disabled
Handler code:
if (ccplas.CCP1ASE) // CCP1ASE bit get's 1 if auto -shutdown is activat-
ed

FCM_%n(); Il call selected macro

}

What to do depends on the time of a peak current compared to the pulse-on-time.
Here examples are given for 2 extreme conditions, very short peak and very long
peaks

a) Short peak currents

With auto-restart the PWM start directly is Vsense becomes < Vref. If (very) short
peak currents activate the auto-shutdown, the result will be that only the rising edge
of these peaks will occur and which will results that the motor effectively does not
restart. If these short peaks are acceptable, the best way is to integrate the current
with a RC circuit in the Vsense. The Vsense will not become > Vref.

b) Long peak currents

If accidental high currents are expected e.g. motor forced to stop, the best way is to
wait a while and test if the shut-down conditions are removed which make an (auto-)
restart possible.

In this interrupt macro a time delay can be set.

c) Bridge temperature

If a temperature warming is available, like the ADP3624 bridge, this can be easily
used with the auto restart. The temperature warning will disappear after a while
when temperature drops due to the auto-shutdown. Some hysteresis is used in this
type of bridge.

To Auto-restart the PWM, The PWM Restart Enable P1RSEN bit 7 in the Enhanced
PWM Control Register PWM1CON must be set.
pwm1con= pwm1icon | 0x80; // bit7=1 enable auto restart

Pin settings PIC12F1840

FIGURE : 8-PIN DIAGRAM FOR PIC12(L)F1840
PDIP, SOIC, DFN
vn:»—‘[h kgv 8[]=Vss
RXMDTHCCP1MP1ATYSANQITICKITIOSUOSCICLKINRAS == [l 5 7[J=— RANANOICPSIICTIN+DACOUTTX!ICK!iSDOM)/SE! P 1B)MDOUTACSPDAT
MDCINZT1G Y P1BMTX M HCK™SDOMICLKRIC 1IN T10SOICLKOUT/IOSC2ICPSHANIRAY == []3 g &[]+ RA1ANTICPS1VRESCIND-SRIRXMND T SCLISCKMOMINICSPCLK
MCLRNPPTIGIISSIRAS —= [& 5[Ja-w RAZANZICPS2/C10UTISRQTOCKICCR 1P AN FLTOISDA/SDIINTMDCING
Note 1: Pin function is selectable via the APFCON register,
TABLE : 8-PIN ALLOCATION TABLE (PIC12(L)F1840)
=
'y
g =
8] 2 £ - = 5
[=S - a
o [8| e | § § - 3 g % g % : 3 |3 $
2 ls|3| § . g - £ g 2 g $ g || @&
a 2 3 § @ = w £ s
£
a
&
RAD | 7 | AND | DACOUT CPS0 C1IN+ — - PIEM [TX™ SDOM 10C MDOUT Y |[JICSPDAT
cKM §8n ICDDAT
RA1 | 6 | AN1 VREF cPs1 [C1INO- SRI - - Rx(™ SCL Ioc MDMIN Y [[icsPcik
ot" SCK ICPCLK
RA2 | 5 | AN2 — cPs2 ciout SRQ Tocki [ccePi” — SDA INT/ MDCINT | Y —
P1AM SDI 1oC
FLTO
RA3 | 4 116N ssm |l oc Yy |0 mer
A\
RA4 [3 | AN3 - CPS3 C1IN1- - T1GM P18™ T spof 1oc MDCIN2 Y 0sc2
T10S0 ckM CLKOUT
CLKR
RAS [2 | — - — - SRNQ TiCKI |ccP1™ RX(T — 1oC — Y 0sc1
T108! P1AlY ot CLKIN
Voo | 1 - - - - - - - —_ - - - -] veo
Vss | 8 - - - — - - - — - o - — |l Vss

Note 1: Pin function is selectable via the APFCON register

Table annex VI. Green pins used during on board programming ICSP. Red pins used during opera-
tion. RA4 is used for LED output.

RS232 output (Tx) or LED1 output on RAOQ. Shunt voltage on RAL (-Input of the
comparator). PWM output on RA2 or RA5. RC-input on RA3 (Interrupt-On-Change).
Remark: A better interrupt performance gives the INT input. But this pin RA2 is al-
ready used for the PWM. RA4 used for LED2.

Programming on the board (green pins) is possible (ICSP), but set the PPP options
to raise Vdd before Vpp (PPP options can be found under the ‘options..” knob of the
chip configuration window).

Filtering

In general filtering can be done by averaging data. Here is used a moving average,
done on a special way [Matrix Multimedia] That is a part of the moving average
(MA) is replaced by a part of a new value of the data read.

MA(new)= MA(old) — MA(old)/k + Data(new)/k with k=1,2,3.....

To simplify the program only k= 2”n is used with n=0,1,2,3..... (k=1,2,4,8...)

If new data change suddenly from O to 1 (step function) the moving average will
reach the end value depending on the damping factor k. A special case is k=1 which
is no filtering and the moving average reaches directly the end value.

Moving average
100,0% P—
90,0% | / /ﬂ“"”ﬂf
80,0%
| / P [
o 70,0% %
¥ Vi e
€ 60,0% k=4
: |
2 50,0% - / k=8
£ 40,0% - —k=16
S - k=
s 30,0% A k=32
—— k=64
20,0% -
10,0% /
0,0%
0 20 40 60 80 100
of steps

Figure Annex VIIl. Moving average of a change from 0 to 1 as function of the number of steps.

In the next table the number of steps needed to reach a particular percentage of the
end value, are given for different damping factors k.

k
% of end
value 1 2 4 8 16 32 64 Remarks
50% 1 2 5 11 22 44 | RC-time
90% 3 8 17 36 71 160
95% 4 10 | 22 45 92 190 | Statistically often used
99% 7 15 | 32 66 144 290 | Advised in this program
99,9% 10 | 23 | 49 101 205 413 | Advised in this program
100% | 1 0 0 0 0 0 0 The new value

Table Annex VIII. The number of steps needed to reach a percentage of the end value. Remark: « =
infinite is just theoretically the number of steps needed to reach 100%.

In a program moving average can be used:
To remove noise on the RC-signal period times
For damping the output PWM signals

See details in the filtering chapters VI.

Electronic details

Some advices about electronic parts, see below.

a) Shunt

Shunt resistances are not always easily available in small values and for small
powers. An alternative is to use resistance wire and made the shunt yourself.
Resistance wire is available at Conrad [...] from 2.5 Ohm/m and higher. | used
Isachrom 60 with a resistance of 5.65 Ohm/m. With a Vsense of 0.15625 Volt
(see Annex IV.1) and 1A current limit a resistance of 0.15 Ohm is needed,
which is equal to the wire length of 0.15625/5.65= 2.7 cm. The disadvantage
is that these wires do not solder very well. This can give an additional re-
sistance.

b) Soldering SMD components

Soldering SMD IC’s with traditional soldering iron can be done in the following
way. Soldering just one pin, until the IC is in the correct position. Next solder all
other pins, do not worry if solder comes between two pins. Take desolder wick
and take the surplus of solder away. Take care not to long soldering the IC to
prevent over heating of the IC.

Further reading

Below are some links to other resources and articles on related subjects, and tech-
nical documentation relating to the hardware used for this project...

Flowcode: http://www.matrixmultimedia.com/flowcode.php
E-blocks http://www.matrixmultimedia.com/eblocks.php
Learning Centre: http://www.matrixmultimedia.com/Ic_index.php
User Forums: http://www.matrixmultimedia.com/mmforums
Product Support: http://www.matrixmultimedia.com/sup_menu.php

Copyright © Matrix Multimedia Limited 2012

Flowcode, E-blocks, ECIO, MIAC and Locktronics are trademarks of Matrix Multimedia Limited.
PIC and PICmicro are registered trademarks of Arizona Microchip Inc.

AVR, ATMega and ATTiny are registered trademarks of the ATMEL corporation.

ARM is a registered trademark of ARM Ltd.

