

EB540-80-02 USB Solution Instructor Guide

 Page 1

EB540

USB
Course notes

© Copyright Matrix Multimedia Limited 2011

EB540-80-02 USB Solution Instructor Guide

 Page 2

About this course 3

Scheme of Work 4
Flowcode – Solutions to Exercises 15
 Exercise 1 16
 Exercise 2 21
 Exercise 3 27
 Exercise 4 32
 Exercise 5 35
 Exercise 6 38
 Exercise 7 41
 Exercise 8 43
USB Student Guide 47
 Student Contents 48
 About this course 49
 USB Overview 50
 Preamble 50
 Key advantages of USB 50
 Introduction to USB 51
 Data transfer 56
 Transfer types 56
 Transfers and Transactions 57
 Transactions 58
 USB Packets 59
 Setup 60
 The Setup stage 60
 Learning about USB Device Capabilities 62
 Descriptors 62
 Device descriptors 63
 Configuration descriptors 63
 Interface descriptors 64
 Endpoint descriptors 64
 String descriptors 64
 The Matrix Multimedia USB Training Solution 65
 Solution Overview 65
 Default connections and settings 66
 Flowcode and USB 66
 USB Serial component 67
 USB HID component 67
 USB Slave component 67
 Enumeration wait setting 67
 USB Serial device 68
 Installing the device drivers 68
 USB Serial device and HyperTerminal 69
 USB Slave device 71
 Installing the device drivers 71
 USB Slave and Visual Basic 72
 USB HID Custom Descriptor Generation 73
 PIC 18F4455 configuration 74
 USB Assignments 75
 Exercise 1 – Human Interface Device: Mouse 76
 Exercise 2 – Human Interface Device: Keyboard 79
 Exercise 3 – Human Interface Device: Data Logger 82
 Exercise 4 – Communications Device: USB Terminal 84
 Exercise 5 – Communications Device: USB to RS232 protocol bridge 86
 Exercise 6 – Slave Device: Basic Slave Functionality 88
 Exercise 7 – Slave Device: Storage Scope 92
 Exercise 8 – Slave Device: Triggered Scope 95
 The USB C Code Library 97

EB540-80-02 USB Solution Instructor Guide

 Page 3

About this course

Aims: The aim is to introduce the concepts involved in USB devices.

 On completing this course students will have learned about:

• the relationship between USB masters, hubs and endpoints;
• the electrical principles behind USB architecture;
• the components that make up a USB device;
• the options available for USB devices;
• the addressing schemes;
• USB signals and routing;
• low power and sleep modes;
• USB device drivers;
• USB devices that do not require drivers.

What you will need:
To complete this course, students will need the following equipment:

• Flowcode software
• E-blocks including:

• 1 Multiprogrammer (PIC - EB006)
 with PIC18F4455 device and 4MHz crystal;

• 1 Sensor E-Block (EB003);
• 1 LED E-Block (EB004);
• 1 LCD E-Block (EB005);
• 1 Keypad E-Block (EB014);
• 1 USB E-Block (EB055);
• 1 RS232 E-Block (EB015);

Using this course:

This course presents students with a number of tasks listed in the exercises that follow the
USB overview. All the information needed to complete these is contained in the notes.

Before starting the exercises, students should familiarise themselves with the background
material.

Time:
To undertake all of the exercises will take around twelve hours.

Important note:
Information presented here is correct at the time of publication..
Please check the Matrix Multimedia web site, http://www.matrixmultimedia.com for the latest
E-Blocks documentation.

EB540-80-02 USB Solution Instructor Guide

 Page 4

Scheme of Work

EB540-80-02 USB Solution Instructor Guide

 Page 5

Section Notes for instructors Timing
(minutes)

1. Introduction to USB

1.1 Preamble

Students familiarise themselves with the course ahead.
They can use a web browser to review the differences between
various versions of USB, from USB1.0 to USB 3.0.

5 -10

1.2 Key Advantages
of USB

This section lists the main advantages, and drawbacks, of the
USB protocol. Again, they can use the internet to familiarise
themselves with other communication protocols such as
Firewire and RS232.

5 - 15

1.3 Introduction to
USB

This section compares the performance of USB 2.0 devices
with Firewire and Serial communications links.

It then gives a glossary of terms used in USB systems,
including:

master / slave configuration;
USB power;
connectors;
functions;
endpoints;
pipes;
classes
device drivers
addressing
enumeration
interface speeds
noise immunity.

USB is a network of attachments connected to a host
computer. The attachments are either functions or hubs, and
together they are known as devices.

The host has a hub embedded in it called the root hub, the
interface between the computer and the USB ports it houses.
External devices which offer more than one function are
usually combined with a hub, and are then called compound
devices. Hubs may be connected to other hubs in a tiered
arrangement, but logically the system appears as a linear bus.

These terms may mean little until the student has had hands-
on experience of the USB protocol later in the course.
However, it pays to spend time on these terms now. At least
students will know where to find some explanation of these
terms if problems arise.

No attempt has been made to tackle physical layer issues,
such as the use of NRZI for signalling, and ‘bit stuffing’. The
terms ‘J state’ ‘K state’ and ‘Single-ended zero (SE0)’ are not
used. Instructors wishing to expand on these issues will find
the solution a fitting tool to facilitate this.

20 - 30

EB540-80-02 USB Solution Instructor Guide

 Page 6

2. Transfer Types

2.1 Transfer Types

The USB protocol is used across an increasingly wide variety
of applications. Different situations demand different kinds of
data transfer.

This section outlines the differences between control,
interrupt, bulk and isochronous transfers. Depending on the
situation, the designer can choose to prioritise data validity,
latency (delay) or bandwidth by choosing the appropriate
transfer type. Once again, the students can use the internet to
reinforce the ideas introduced here, or the instructor may
choose to spend time supporting them.

Students should be warned that, despite the name, interrupt
transfers do not cause interrupts. The text explains that this
transfer type is used where previously devices would use
interrupts to initiate communication.

15 - 30

2.2 Transfers and
Transactions

It is important that students understand and use the correct
terminology in USB systems. This section distinguishes
between data transfers and transactions.

A data transfer may be split across several individual
transactions. These transactions may occur across a number
of frames. The reality is that the host will send out frames
every millisecond. These frames will contain a number of
transactions, sandwiched into time slots within the frame.
Several transactions within a frame may be addressed to the
same device.

Each transaction is made up from a number of packets,
known as token, data and handshake packets. Some sources
refer to these as phases. Each has its own function, and as a
result, contains different sets of fields.

Students should study the diagrams carefully, so that they
understand them. It may be profitable for them to make copies
of them for their records.

15 - 30

2.3 Transactions

This section examines the four transaction types – start of
frame, token, data and handshake. The purpose of each is
described briefly, and their structure is outlined
diagrammatically.

As its name suggests, the Start-of-frame packet is found at
the beginning of every frame. In other words, the host
produces one of these every millisecond.

One job of the Start-of-frame packet is to track frame number.
One of the fields, the frame number, identifies each frame of
the transaction. Devices can use this to confirm which
transaction has been received, or can use it as a timing
source. As it is eleven bits long, it can cope with 211 (= 2048)
frames. When the maximum is reached, the frame count
resets.

20 - 30

EB540-80-02 USB Solution Instructor Guide

 Page 7

2.3 Transactions
continued...

The frame can contain eight microframes, when working at
high speed. All eight carry the same frame number.

The text goes on to outline the three types of data packet –
Setup, IN and OUT. The communication ‘pipes’ that are set up
between the host and peripheral devices are uni-directional.
One task of a data packet is to define the direction of data
flow. This is always taken from the viewpoint of the host. IN
means flowing in to the host and so out from the peripheral.
OUT means flowing out of the host, and so in to the
peripheral. One implication of this, explored later, is that ‘Set’
requests, where the host imposes a configuration value on the
peripheral device, have direction OUT, whereas ‘Get’
transactions, where the host requests settings from the
peripheral device, have direction IN. The Setup process has
its own section later.

The idea of having two varieties of data packet, called Data0
and Data1, offers another form of error checking, where data
is transmitted using multiple transactions. The first of these
will use a Data0 packet, the second a Data 1, then a Data0,
and so on. The data toggle value is specified in the PID. Both
transmitting and receiving devices can monitor the data type
to check for missing transactions.

The receiver of data will reply with a handshake packet to
indicate the status of the transfer. Hence, for an OUT
transfer, the peripheral device replies by sending the
handshake packet, whereas for IN communications, the host
replies. Peripheral devices can reply with ACK (valid data was
received,) NAK (the device is busy and did not receive the
data,) or STALL (the device does not understand the transfer,
or is not active.) A host can only send ACKs. If the receiver
detects an error, it returns no handshake packet.

2.4 USB packets

USB transmissions are synchronous, thanks to NRZI
encoding and bit stuffing, which allow the receiver to
synchronise its clock with that of the transmitter. In addition,
each packet starts with a synchronising field, a series of
alternating bits, to ensure that the clocks in the host and
peripheral device are in synchronisation.

A PID field follows. The term ‘PID’ has two possible meanings
in the USB world. Here, it means Packet IDentifier. When
referring to whole devices, it can mean Product Identifier, a
16-bit number used to identify the appropriate device driver.
The Packet ID is used to identify the type of packet being
sent. e.g. token, data, handshake etc. The table shows how it
does this. The student text says that the four most-significant
bits are the inverse of the four least significant bits. To be
precise, they are the 1’s complement of the fout least-
significant bits. It is left to the instructor to decide whether to
expand on this with the students.

20 - 30

EB540-80-02 USB Solution Instructor Guide

 Page 8

2.4 USB packets
 continued...

The address field contains a seven bit address, allowing 27
(=128) addresses. Only 127 of these are assigned as device
addresses. Address 0 is reserved for the mandatory default
endpoint on all devices,, so that the host can send control
transfers.

The endpoint field identifies the endpoint (function) to which
the packet is directed. Each endpoint has a number from 1 to
15, expressed as a four-bit binary number.

The CRC (cyclic redundancy check) is included to check the
data for errors. A mathematical operation is applied to the
data at the transmitting device, and the result of that operation
is sent as part of the transfer. The same mathematical
operation is applied to the data at the receiver. The result is
compared to that sent in the CRC. If they are the same, there
is no error. If the results are different, then an error is present.

The end-of-packet field indicates that the transaction is
complete. The bus then goes back to its idle state.

EB540-80-02 USB Solution Instructor Guide

 Page 9

3 Setup

3.1 The Setup stage

The purpose of the Setup stage is explained, as the
process by which the host learns about the recently
attached device, and then each of the three phases,
token, data and handshake are described.

The core of the transaction is the request for
information. The data phase contains five fields, which
occupy eight bytes. The first, bmRequestType, specifies
the type of request, its direction and the recipient’s
address. The next, bRequest, specifies the actual
request. Its contents depend on the type of request
(standard, class, or vendor) identified in the
bmRequestType field. The next field, wValue, occupies
two bytes and contains information for the recipient from
the host. The significance of the information depends on
the type of request. For example, the Set_Address
request will send the new address in the wValue field.
Next comes another two byte field, called wIndex. Again
it is used by the host to pass information to the device.
This information again depends on the request. It may
include an endpoint address, and interface number etc.
Finally, comes another two byte field, wLength, The
host will specify how many data bytes are sent.

The manual then includes a series of tables describing
the structure of a number of different requests. The
purpose is to illustrate what goes into these requests,
and how they are transmitted. It is reference material to
aid later study. It is not intended that the students
should in any way ‘learn’ these tables.

The handshake phase takes place if the device receives
the full transaction without detecting any errors.

20 - 30

EB540-80-02 USB Solution Instructor Guide

 Page 10

4 Learning about USB Device Capabilities

4.1 Descriptors

4.2 USB Device
Descriptors

4.3 USB
Configuration
Descriptors

4.4 USB Interface
Descriptors

4.5 USB Endpoint
Descriptors

4.6 USB String
Descriptors

During enumeration, the host learns about the capabilities
offered by the device, using control transfers which request a
series of descriptors.

These start with the broad brush strokes of the Device
Descriptor, which cover the global properties of the device. It
also specifies all of the subordinate descriptors needed by the
host. This is followed by one of the Configuration Descriptors,
which include its power requirements, the Interface
descriptors, providing information about a feature of the
device, including class and protocol information, the endpoint
descriptors, which specifies the maximum packet size the
endpoint is capable of handling, and finally any optional
descriptors.

Again, the purpose is illustrative and to act as a reference. It is
not intended that the students should in any way ‘learn’ these
tables.

20 - 30

