
Page 1

© Matrix Multimedia 2011 MX018 - Simple Masking Technique

Simple Masking Technique
by David Aldersley June 2010

Abstract
Not all articles have to be big and flashy, some are there to explain the fundamentals.
Without Newton’s theory of mechanics there would be no Einstein’s theory of relativ-
ity. So prepare to learn the basics of simple masking, and like Einstein in his field of
physics, you too will stand on the shoulders of giants to embark on your journey to
embedded greatness.

Requirements
Software:

• No software requirements

Hardware:

• No hardware requirements

Using Simple Masking Technique to Send Data Over a Serial Connection

Sometimes it is not possible to work with large binary numbers 16bit long integers or larger, a simple
solution for this is to split these larger numbers down into individual bytes to allow them to be ma-
nipulated in more ways.

One usage for this is for sending data over RS232 where it sends these bytes of data individually. So
to send a large number we would need to break the number down into individual bytes and send
each of these separately, then we can bring these bytes back together to get our original long integer
back.

To break down our long integers we can use a simple masking technique to separate the two bytes
from each other. For example, if we consider the decimal number 1717, this number expressed in
binary becomes:

00000110 10110101

The way to break this long integer down would be into two individual bytes:

00000110 - High byte
10110101 - Low byte

To separate these bytes we use a logical ‘&’ to ‘mask’ out either the higher byte or the lower byte
along with 0xFF which is hexadecimal for 255 decimal or 11111111 binary.

To separate the lower byte from 1717:

low_byte = 1717 & 0xFF

Page 2

© Matrix Multimedia 2011 MX018 - Simple Masking Technique

The above table shows the first byte being “masked” off, as the ‘&’ operator only allows matching ‘1s’
through and masks off everything else.

To separate the higher byte from 1717 we need to shift the bits down to where the lower byte was
located, to do this we use the ‘>>’ operator to shift the bits down.

high_byte = (1717 >> 8) & 0xFF

This leaves us with two variables:

low_byte = 0xB5
high_byte = 0x6

We can now combine these two back together in a similar way using another bitwise logical operator.
Using the OR (|) operator we can add these two bytes together to create our original integer.

To start recombining the two bytes we must make sure our high byte is moved back to the first eight
bits of the 16 bit integer. To do this we use a similar operator to before but pointing the opposite way
to move the bits higher rather than lower ‘<<’. (We will use Integer as a temporary variable to allow
calculation).

Integer = high_byte << 8

Now we set Integer to be the value of high_byte but shifted 8 bit places higher.

Integer = 00000110 00000000

Lastly we need to turn those last eight zeros (the lower byte) into the same value stored in our
low_byte variable, to do this we use the OR operator.

Integer = Integer | low_byte

As can be seen from the table above, after using the OR operator and combining the values we had
in Integer and low_byte the total we come out with is our original value of 1717. The OR operator
allows creates a 1 value if either of the other two binary numbers have a 1 in that position, thus we
can combine our two binary values to recreate our original long integer.

Page 3

© Matrix Multimedia 2011 MX018 - Simple Masking Technique

Flowcode Example:

Sending data over a serial port requires the data to be sent in individual bytes, therefore if we have
an integer we want to send which is greater than 255 (max decimal number for one byte) then the
method above can be used for this purpose.

In the example Flowcode files I am using two RS232 boards to send data to each other and output-
ting the result onto an LCD attached to Board A. The input is from a potentiometer which I am gather-
ing an integer from the 0~1000 range which is attached to Board B.

To send this integer I am breaking it down into two separate bytes and sending each across the serial
cable individually and then combining them back together again using the methodology explained
above.

Equipment Used:

- 2x EB006 Programmer boards
- 1x EB003 Sensor board
- 2x EB015 RS232 board
- 1x EB005 LCD board
- 1x Serial cable

Next Step0

This same method could be used to deal with 32bit integers as well:

byte0 = ((longInt >> 24) & 0xFF) ;

byte1 = ((longInt >> 16) & 0xFF) ;

byte2 = ((longInt >> 8) & 0XFF);

byte3 = (longInt & 0XFF);

This would separate the 32bit integer into the 4 separate bytes, it would then be possible rebuild them
again in a similar way to the 16bit integer. To do this in Flowcode however you would need to edit the
C code manually since 32bit integers are not natively supported.

Further reading

Below are some links to other resources and articles on related subjects, and technical documenta-
tion relating to the hardware used for this project...

Flowcode: http://www.matrixmultimedia.com/flowcode.php

Learning Centre: http://www.matrixmultimedia.com/lc_index.php
User Forums: http://www.matrixmultimedia.com/mmforums
Product Support: http://www.matrixmultimedia.com/sup_menu.php

Page 4

© Matrix Multimedia 2011 MX018 - Simple Masking Technique

Copyright © Matrix Multimedia Limited 2011

Flowcode, E-blocks, ECIO, MIAC and Locktronics are trademarks of Matrix Multimedia Limited.
PIC and PICmicro are registered trademarks of Arizona Microchip Inc.
AVR, ATMega and ATTiny are registered trademarks of the ATMEL corporation.
ARM is a registered trademark of ARM Ltd.

