
Page 1

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

Get more out of the GSM Short Message Service

by Leigh Morris Oct 2012

Abstract
This article shows how to use GSM message PDU mode and improve upon the text
mode length limit for an SMS (Short Message Service) text message when using the e-
blocks or MIAC System GSM modem.

Requirements
Software:

• Flowcode is preferable, but not essential
Hardware:

• E-blocks upstream board or MIAC Unit

• EB066 GSM Board, or MIAC GSM Expansion module

Introduction

The GSM SMS (Short Message Service) text messaging communication payload is limited to 140
bytes, or octets. Short messages can be encoded using a variety of coding schemes and alphabets,
these being, the 8-bit data alphabet, the GSM 7-bit alphabet and the 16-bit UCS-2 alphabet (required
for such as Arabic and Cyrillic alphabet languages).
Hence this gives the maximum individual short message sizes of 160 7-bit characters, 140 8-bit char-
acters, or 70 16-bit characters. Clearly the GSM 7-bit alphabet allows the most characters to be
transferred and support for it is mandatory for GSM handsets. The GSM7 character set is similar to
ASCII, but there are some exceptions. For characters not available in the initial code page there is a
second code page scheme using an escape character mechanism.

So, how do I send 160 characters?

Some modems allow a message to be encoded and sent in GSM7 format, but we can ensure this is
the case by using the modem in PDU mode, rather than Text mode. First of all we will assume that all
the text characters that are to be sent are available in the GSM7 alphabet.
Next we need to pack the (up to) 160 characters of our message into a maximum size 140 octet
buffer. But as we will be working in PDU mode, there is some header information we need to insert
first.
So we are going to create an image of the PDU we are sending in a byte array. In Flowcode this is
best done by creating a string (of length 200 bytes) PDU[200] and we will need a pointer into the ar-
ray, so create a byte PDU_IDX for that purpose.

To help insert bytes into the PDU buffer, we
create a macro PackByte(BYTE), which
simply inserts the BYTE at the current writ-
ing index and then increments the index
ready for the next write to buffer.

Page 2

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

Next we create a macro PackPDU, which builds the PDU for the message, as follows:

This separates the PDU process into two main parts,
the header and the message body (user text).

Creating the message Header

To create and pack the required message
header, we create a global string NUMBER[20]
to hold the destination number, and a Pack-
Header macro as follows:

1) The first byte indicates the length of the
SMSC address, which is zero to force the mo-
dem to use the default for the network.

2) Indicate that this is a Submit PDU.

3) Message Reference is set to zero, the mo-
dem will use its own reference.

4) Calculate and insert the length of the desti-
nation number.

5) Type Of Number set to
International Format

6) Protocol Identifier set to zero

7) Data Coding Scheme zero for GSM7

Page 3

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

The destination address number needs to be packed into the PDU as two digits per byte, so we cre-
ate a separate macro to do this, namely PackDA, as follows:

You will notice that if the destination address is an odd number of digits then we are required to insert
an extra 4 bits, set to 0x0f0.

Page 4

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

Packing the message body (User Text)

For GSM7 text encoding, the 7 bit wide text characters, or septets, are packed into the octet buffer as
viewed as a continuous bit buffer. Hence the free last bit of the first octet in the buffer is used by the
first bit of the second septet character and so on. So the septet characters will be split across octet
boundaries, until we get to the end of the 8

th
 character, at which point septets and octets will be syn-

chronized, as 8 characters fit into exactly 7 octets.

To encode the text we will use a global UINT BIT_BUFFER as a shift register and a bit counter UINT
BIT_COUNT. The macro PackGSM7(CHAR) to pack each character into the PDU buffer is as fol-
lows:

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Third Octet Second Octet First Octet

 Second Septet First Septet Third Septet

Page 5

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

Create a global string TEXT[255]
to hold the message text.

Initialise the counters and index

We can now pack the message text into the PDU buffer by creating a macro PackText that uses the
PackGSM7 macro:

Loop through the characters of
the message and pack them into
the PDU buffer.

If there are any bits remaining,
pack another character to flush
them into the PDU buffer.

Page 6

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

Create macros SendHex and SendPDU to send the PDU data to the modem, as it is required to be
sent as two hexadecimal character pairs per byte.

Page 7

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

Get the length of the
PDU and create the
modem command.

Send the command to
the modem.

Wait for the “>” prompt
before sending the
PDU data to the mo-
dem.

Send the PDU data to
the modem and termi-
nate with a Ctrl-Z
character.

Sending the PDU to the GSM Modem

Page 8

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

UDH

MESSAGE
PART 1

UDH

MESSAGE
PART 2

UDH

MESSAGE
PART 3

What if I need to send more than 160 characters?

UDH

...

UDH Length

IE 1

IE 2

IE n

IE

IE Data

IE Data Length

IE Identifier

Now that we know how to send messages in PDU mode we can also take advantage of another GSM
feature, that being SMS concatenation. Content longer than 140 octets can be sent using multiple
SMS messages.

This requires that each SMS message, that forms part of the whole content, has to start with informa-
tion regarding the segmentation of the content.

This information part of the SMS is contained in a section referred to as the User Data Header
(UDH) and uses the initial few octets of the SMS payload. Hence this also reduces the available
space for message text within each SMS.

Format of the User Data Header (UDH)

Page 9

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

0 0x06 Length of the User Data Header

1 0x08 IEI for 16 bit concatenation

2 0x04 Length of IE data

3, 4 0x0001 (2 octets) 16 bit reference number for this message. Use the same reference
number for all parts belonging to this message, but increment for any subse-
quent messages.

5 0x03 The total number of parts (segments) that make up this message

6 0x01 The sequence number of this (first) part, increment for subsequent parts, i.e.
2 and 3

Index Content Description

The first octet of the payload is the length of the User Data Header and is simply a count of the num-
ber of octets of User Data Header that immediately follow, and prior to, the start of the message text.
This is followed by any number of Information Elements (IE).
Each Information Element consists of the Information Element Identifier (IEI), one octet, followed by
one octet that contains the length of the IE data that follows.

Segmenting the Message

We use the User Data Header to include the segmentation information such that the complete mes-
sage can be reconstructed at the receiving device.
So for example, if our concatenated message is made up of three parts then each SMS PDU will
contain the following octets in the User Data Header at their start:

The actual message text then follows, remember that we have now used 7 octets of our 140 octet
maximum. So there will be 133 octets available for the message text, which will allow the sending of
152 characters.

Also note that if our text is encoded as GSM7 then it must align with our usual septet boundaries. In
the case above we have used 7 octets so the text that follows can start immediately in the next octet,
otherwise we would need to insert padding bits. This is needed for backwards compatibility with mo-
bile phones that do not understand user data headers, otherwise the whole message would become
unreadable garbage rather than just this initial header information.

Page 10

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

Creating a User Data Header

If there is more than one part
(segment) to the message
then insert the User Data
Header information.

Followed by the message
text.

Page 11

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

The use of a User Data requires the setting of the User Data Header (UDHI) flag to inform the receiv-
ing entity that a User Data Header exists and should be processed. This we can do with a small
change in the PackHeader macro:

Page 12

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

The complete message sending macro

Page 13

© Matrix Multimedia 2012 MX038 - Get more out of the GSM Short Message Service

Further reading

Below are some links to other resources and articles on related subjects, and technical documenta-
tion relating to the hardware used for this project...

E-blocks: http://www.matrixmultimedia.com/eblocks.php
 3GPP TS 23040 http://www.3gpp.org/ftp/Specs/html-info/23040.htm
 AT Commands Guide http://www.telit.com

Learning Centre: http://www.matrixmultimedia.com/lc_index.php
User Forums: http://www.matrixmultimedia.com/mmforums
Product Support: http://www.matrixmultimedia.com/sup_menu.php

Copyright © Matrix Multimedia Limited 2012

Flowcode, E-blocks, ECIO, MIAC and Locktronics are trademarks of Matrix Multimedia Limited.
PIC and PICmicro are registered trademarks of Arizona Microchip Inc.
AVR, ATMega and ATTiny are registered trademarks of the ATMEL corporation.
ARM is a registered trademark of ARM Ltd.

What else can I do with IEIs?

As you will notice, the IEI format is a flexible mechanism whereby handsets can process Information
Elements they understand and skip ones that they don’t.
The enhanced messaging service EMS is built on this concept and allows the sending of additional
audio and visual information in this format within the user data header. See 3GPP TS 23040

