
www.matrixtsl.com

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 2 Copyright © 2014-2017 Matrix TSL

EB639

Bluetooth
Solution

Course notes

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 3 Copyright © 2014-2017 Matrix TSL

Contents

1 Introduction .. 7

1.1 Structure of these notes .. 7
1.2 Learning outcomes ... 7
1.3 Using this manual ... 8

1.3.1 An introduction to the Practical implementation sections 8
2 What do we mean by Bluetooth? ... 9

2.1 BLU2i.. 9
2.2 AT Commands .. 9
2.3 Hardware and software used in the course .. 9

2.3.1 E-Blocks solution ... 9
2.3.2 Flowcode ... 10
2.3.3 Additional PC software (EZURiO terminal) .. 10

2.4 Additional useful devices ... 10
2.4.1 Onboard Bluetooth/USB dongle .. 10
2.4.2 Bluetooth headset .. 10
2.4.3 Bluetooth enabled phone ... 10

3 Getting started .. 11
3.1 Setting up the hardware .. 11

3.1.1 E-Blocks solution ... 11
3.1.2 Setting up the EB024 Bluetooth board ... 12
3.1.3 Adding the Voice Codec board .. 12
3.1.4 Standard Settings .. 12

3.2 Introduction to Flowcode ... 13
3.2.1 Starting out in Flowcode ... 13

3.3 The Bluetooth component ... 13
3.3.1 Properties and pin connection ... 14
3.3.2 Bluetooth component macros .. 14
3.3.3 Creating and sending AT scripts ... 15

3.4 Testing the hardware ... 15
4 Bluetooth theory and background .. 16

4.1 Introduction to Bluetooth ... 16
4.1.1 Brief history ... 16
4.1.2 Bluetooth concepts .. 16
4.1.3 Bluetooth advantages ... 17
4.1.4 Bluetooth disadvantages .. 17

4.2 Protocols and the OSI model .. 17
4.2.1 Application .. 19
4.2.2 Bluetooth layers ... 19
4.2.3 Hardware details .. 20
4.2.4 Profiles .. 22

5 Discovery ... 23
5.1 Theory: Finding other Bluetooth devices .. 23

5.1.1 The Inquiry command ... 23
5.1.2 Additional Inquiry commands and the <devclass> parameter 23
5.1.3 Discovery example .. 24

5.2 Exercise 1: Discovering Bluetooth devices .. 25
5.2.1 Introduction ... 25
5.2.2 Objectives ... 25
5.2.3 Pre-requisites ... 25
5.2.4 Hardware/Software requirements ... 25
5.2.5 Exercise information .. 25
5.2.6 Learning outcome .. 25
5.2.7 Additional tasks .. 26

5.3 Practical implementation: Discovering Bluetooth devices .. 27
5.3.1 Discovering and discoverable .. 27
5.3.2 Planning the program .. 27

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 4 Copyright © 2014-2017 Matrix TSL

5.3.3 Required macros ... 27
5.3.4 Initializing .. 28
5.3.5 Sending a command ... 28
5.3.6 Checking for responses .. 29
5.3.7 Running the complete program ... 31

6 Discoverability ... 32
6.1 Theory: Discoverability .. 32

6.1.1 Configuring for start up ... 32
6.1.2 Using S registers ... 32
6.1.3 Using AT commands ... 32
6.1.4 S Registers or AT Commands? ... 32
6.1.5 Making a device discoverable .. 33
6.1.6 Baud rate and settings .. 33
6.1.7 Discoverable and Connectable .. 33
6.1.8 Number of rings before answering .. 33
6.1.9 Whether to allow remote command for data sending... 33
6.1.10 Saving the configuration ... 33
6.1.11 Implementing the configuration ... 33
6.1.12 A basic configuration set up ... 34

6.2 Exercise 2: Discoverability .. 35
6.2.1 Introduction ... 35
6.2.2 Objectives ... 35
6.2.3 Pre-requisites ... 35
6.2.4 Hardware/Software requirements ... 35
6.2.5 Exercise information .. 35
6.2.6 Learning outcome .. 35
6.2.7 Additional tasks .. 36

6.3 Practical implementation: Discoverability ... 37
6.3.1 Continuing development ... 37
6.3.2 Configuring the Bluetooth device .. 37
6.3.3 Single commands and scripts .. 37
6.3.4 Running and demonstrating the program .. 39

7 Connecting Bluetooth devices .. 40
7.1 Theory: Connecting – Addresses... 40
7.2 Exercise 3: Connecting to a device ... 41

7.2.1 Introduction ... 41
7.2.2 Objectives ... 41
7.2.3 Pre-requisites ... 41
7.2.4 Hardware/Software requirements ... 41
7.2.5 Exercise information .. 41
7.2.6 Learning outcome .. 41
7.2.7 Further work ... 41

7.3 Practical implementation: Connecting ... 42
7.3.1 Resetting the systems ... 42

8 Passkeys and Pairing .. 43
8.1 Theory: Passkeys and Pairing .. 43

8.1.1 Sending the Passkey command .. 43
8.1.2 Initiating pairing .. 43
8.1.3 When to send the Passkey command .. 43

8.2 Exercise 4: Passkeys and Pairing ... 44
8.2.1 Introduction ... 44
8.2.2 Objectives ... 44
8.2.3 Pre-requisites ... 44
8.2.4 Hardware/Software requirements ... 44
8.2.5 Exercise information .. 44
8.2.6 Learning outcome .. 44
8.2.7 Further work ... 44

8.3 Practical implementation: Passkeys and pairing ... 45
8.3.1 The basic program... 45
8.3.2 Advanced features: Choosing what device to connect to 45

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 5 Copyright © 2014-2017 Matrix TSL

8.3.3 Resetting the systems ... 46
9 Checking responses .. 47

9.1 Theory: Checking responses .. 47
9.1.1 Solicited and unsolicited responses .. 47
9.1.2 Response handling macros.. 47
9.1.3 Command and response sequences .. 48

9.2 Exercise 5: Checking responses .. 50
9.2.1 Introduction ... 50
9.2.2 Objectives ... 50
9.2.3 Pre-requisites ... 50
9.2.4 Hardware/Software requirements ... 50
9.2.5 Exercise information .. 50
9.2.6 Learning outcome .. 50

9.3 Practical implementation: Checking responses ... 52
9.3.1 Establishing the expected sequence .. 52
9.3.2 Additional sequence considerations ... 52
9.3.3 Using the WaitForResponse macro .. 53
9.3.4 Error checking methodology .. 53

10 Command modes - Sending data and commands .. 54
10.1 Theory of Command modes ... 54

10.1.1 Data mode, Remote and local command mode .. 54
10.1.2 Local command mode +++ and ^^^ .. 54
10.1.3 Guard gaps and escape sequences ... 54

10.2 Command modes: Exercise 6 .. 55
10.2.1 Introduction ... 55
10.2.2 Objectives ... 55
10.2.3 Pre-requisites ... 55
10.2.4 Hardware/Software requirements ... 55
10.2.5 Exercise information .. 55
10.2.6 Learning outcome .. 55
10.2.7 Further work ... 55

10.3 Practical implementation: Command modes .. 56
10.3.1 Which device is being sent commands? .. 56
10.3.2 Program overview .. 57

11 Audio communication .. 58
11.1 Theory: Audio communication .. 58

11.1.1 Hardware requirements .. 58
11.1.2 Establishing an Audio connection ... 58

11.2 Exercise 7: Audio communication .. 60
11.2.1 Introduction ... 60
11.2.2 Objectives ... 60
11.2.3 Pre-requisites ... 60
11.2.4 Hardware/Software requirements ... 60
11.2.5 Exercise information .. 60
11.2.6 Learning outcome .. 60
11.2.7 Further work ... 60

11.3 Practical implementation: Audio communications ... 61
11.3.1 Audio setup and considerations .. 61
11.3.2 Solo audio testing .. 61
11.3.3 Using headphones/microphones and the Codec board....................................... 62
11.3.4 Program notes .. 62

12 Profiles – Headsets and Telephones .. 63
12.1 Theory: Profiles... 63

12.1.1 Profile specific features ... 63
12.1.2 Device class ... 64
12.1.3 Major and Minor Device Classes .. 64
12.1.4 Device class values ... 64
12.1.5 Setting the Device Class .. 65
12.1.6 ATD and the <uuid> parameter ... 65

12.2 Exercise 8: Headset profile ... 66

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 6 Copyright © 2014-2017 Matrix TSL

12.2.1 Introduction ... 66
12.2.2 Objectives ... 66
12.2.3 Pre-requisites ... 66
12.2.4 Hardware/Software requirements ... 66
12.2.5 Exercise information .. 66
12.2.6 Learning outcome .. 66
12.2.7 Further work ... 66

12.3 Practical implementation: Profiles .. 67
12.3.1 Implementing the Headset profile ... 67
12.3.2 Setting up the headset .. 67
12.3.3 Special commands for the headset profile ... 67
12.3.3 Sending profile related commands ... 68
12.3.4 Checking for profile related commands .. 68
12.3.5 Filtering for particular devices .. 68

13 Trust and Security .. 69
13.1 Theory: Trust and Security .. 69

13.1.1 Security in general ... 69
13.1.2 Authentication .. 69
13.1.3 Encryption ... 70
13.1.4 ATD and Authentication and Encryption .. 70
13.1.5 Trust ... 70
13.1.6 Trusted Devices AT Commands ... 70

13.2 Exercise 9: Trust and Security ... 72
13.2.1 Introduction ... 72
13.2.2 Objectives ... 72
13.2.3 Pre-requisites ... 72
13.2.4 Hardware/Software requirements ... 72
13.2.5 Exercise information .. 72
13.2.6 Learning outcome .. 72
13.2.7 Further work ... 72

13.3 Practical implementation: Trust and Security ... 73
13.3.1 General objectives ... 73
13.3.2 Additional features ... 73

14 Project design principles ... 74
14.1 Project - Baby monitor ... 74

14.1.1 Extending the project with additional features ... 74
14.2 Project - Medical datalogger ... 75

14.2.1 Extending the project .. 75
15 References and Appendix ... 76

15.1 References .. 76
15.1.1 Books ... 76
15.1.2 Websites ... 76

AT command reference .. 76
15.1.3 Common AT Command parameters ... 76
15.1.4 Important AT Commands list ... 76
15.1.5 Important S registers ... 77

15.2 Appendix .. 78
15.2.1 How to… ... 78

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 7 Copyright © 2014-2017 Matrix TSL

PART 1: General Introduction and overview

1 Introduction

1.1 Structure of these notes

These notes are set out as follows:

Part 1: General introduction to Bluetooth and the Bluetooth solution

 Getting started – introduction to the hardware and software

 Bluetooth history and general overview

Part 2: The course
A series of progressive exercises to take students through the concepts and practice required
in establishing Bluetooth communications.

The chapters are broken down into 3 sections for each chapter.

 Theory section

 Exercise description

 Practical notes

Part 3: References and Appendix
Ancillary chapters providing reference information.
Includes:

 Reference section

 A “How to” Programming reference section

 AT Commands section
Includes:

o Common AT Commands
o S Registers and Parameters

1.2 Learning outcomes

These teacher’s notes are designed to introduce the concepts and strategies required for
practical Bluetooth communications. In completing the exercises in this course students will
learn about the following:

 How one Bluetooth device discovers another Bluetooth device and the options
concerning discoverability

 How Bluetooth devices pair and set up a communications channel

 How data of various kinds is transferred between Bluetooth devices

 How Bluetooth is used for audio transmission

 How trust and security are handled by Bluetooth.

 How profiles can facilitate communication with other Bluetooth devices

 How to implement profiles like the Headset profile, LAN, OBEX, and Serial port.

These notes will not address the radio frequency characteristics and low level transmission
characteristics and protocols of Bluetooth. These are all handled by an off the shelf Bluetooth
module which shields users from such issues.

These notes are structured into a number of sections that first take you through setting up,
configuring and testing the hardware and software into the background of Bluetooth and then
into a series of Exercises and examples that take the student through the workings of
Bluetooth.

The exercises should be carried out using Flowcode V7 or later, a graphical programming
language. The Flowcode Bluetooth component is designed to allow students to learn about

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 8 Copyright © 2014-2017 Matrix TSL

Bluetooth without getting bogged down with the problems of programming in C or a lower
level language.

It is envisaged that a student of some competence with Flowcode will need to spend around
20 hours to complete all exercises.

1.3 Using this manual

The main part of this manual is structured around a three part approach:

 Theory.
The first part of a chapter introduces the topic at hand and discusses the theory
behind it, explains the commands used and the general sequences and strategies
required.

 Exercise.
The second element is an exercise. The exercise is given here so that the aims and
objectives are understood and borne in mind whilst reading through the next section.

 Practical implementation.
The third section discusses the practical implementation of the exercise.
Items discussed here include Flowcode macros used, Flowcode strategies and any
other bits of information or advice needed for implementing the exercise objectives.

It is intended that students should first have the theory explained to them in the form of a
lecture or handout. Students can then be given the exercise. Supervisors have a choice
whether the practical implementation notes are handed out or not.

We would suggest that for each exercise the students are given the Exercise sheet(s) and the
Practical implementation notes. Students should build the programs in Flowcode. Initial
Practical implementation notes are quite detailed and provide a good deal of information on
how the program should be constructed. Later Exercises are not provides with such detailed
Practical implementation notes: the student must then use his/her knowledge to complete the
tasks detailed in the Exercise.

The Bluetooth module datasheet is a key part of the Bluetooth solution: students will be
expected to look up the meaning of AT commands and the functions of the Bluetooth
registers. Accordingly students should be given a copy of the Bluetooth module datasheet
which is on the EB617 CD ROM.

For most of the exercises a complete set of solution programs are provided. These take the
form of two programs – one for each Bluetooth node.

1.3.1 An introduction to the Practical implementation sections

This first practical section is in the form of a worked example with all the practical information
provided and an example program built. Later practical sections will contain the additional
information required to accomplish the exercise objectives, and will contain code snippets for
new procedures and macros, but will not include full example programs. The students are
assumed at this stage to be competent enough to be able to create the programs given the
practical section information supplied.

It is intended that wherever possible the programs created by the student for the previous
exercise are re-used for the current exercise. This illustrates both the evolution of the program
as new steps are added, and to show the growing complexity and program flow of a full
working system. This approach also provides students with core code that they are already
familiar with. However the Student programs may need to be assessed at various points to
ensure the code is adequate for the current project, and modifications or comments made as
appropriate to steer student programs through the course as a whole. Such modifications may
take the form of adapting parts of programs to macros to unclutter parts of the program, or for
monitored and assessed code rewrites to implement element in a more organized and
efficient manner.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 9 Copyright © 2014-2017 Matrix TSL

2 What do we mean by Bluetooth?

Bluetooth can be accessed at a number of levels. Bluetooth is both a communications
technology, and a communications strategy. As a communications technology Bluetooth
transforms data from an application to radio signals and back again. As a communications
strategy Bluetooth is about discovering and linking to other Bluetooth devices, and accessing
features on those devices such as audio communications.

This course will concentrate on the communications strategies of Bluetooth. This is when the
end user will experience Bluetooth technologies – linking to headsets and sending data or
audio signals between devices. Considerations such as security and trust will be covered, as
will elements such as profiles and classes.

The Bluetooth communications technology is generally handled automatically by the
Bluetooth devices. Unless one is actively designing Bluetooth chips the lower
communications layers will remain hidden from most end users. Theory and background has
been provided to show how Bluetooth handles communications.

2.1 BLU2i

The device used on the Matrix Bluetooth board is an EZURiO BLU2i device. The BLU2i
device is a self-contained Bluetooth module that can be communicated with using a set of
BLU2i AT commands. This device allows users to connect to and use other Bluetooth devices
at the application level. Using the BLU2i device allows the course to concentrate of the
strategies and sequences of communicating between Bluetooth devices without needlessly
delving into the lower technology levels.
NOTE: The BLU2i module is sometimes called BiSM.

2.2 AT Commands

For this course we will be using the BLU2i AT Commands Set. This AT commands set is
designed for the BLU2i module to configure and control communications. The AT commands
are essentially a method of communicating with the BLU2i module and are not a part of
Bluetooth as such. The AT Commands used are also part of a BLU2i command set. Whilst
this means that a different Bluetooth module may use a different set of AT commands, or not
even use AT commands at all, in practice most AT command based Bluetooth systems will be
similar, and anyway the strategies are what matters, not the specific syntax involved.

2.3 Hardware and software used in the course

The Bluetooth course makes use of the following Hardware and Software:

2.3.1 E-Blocks solution

The E-Blocks solution will contain two complete kits of the following components:

 EB024 Bluetooth board

 EB006 Multiprogrammer

 EB004 LED board

 EB005 LCD Display

 EB007 Switch board

 EB032 Voice Codec board

 Headphones with attached microphone

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 10 Copyright © 2014-2017 Matrix TSL

2.3.2 Flowcode

The example programs used in this course require Flowcode V7 or later.

The Bluetooth component can be found in the Wireless section of the component toolbar:

All example and exercise program files supplied on the Bluetooth solution CD have been
created for Flowcode V7 or later.

This course assumes a degree of familiarity with Flowcode. If necessary time should be spent
using the tutorials and the Flowcode course to familiarize the student with using Flowcode.

2.3.3 Additional PC software (EZURiO terminal)

For basic communications tests a Communications program is required. For use with the
Matrix Bluetooth boards we recommend the EZURiO terminal program which was designed
for use with the BLU2i module.

Install instructions for the EZURiO terminal program can be found in the EZURiO folder on the
Bluetooth solution software CD EB617

2.4 Additional useful devices

The following devices are not supplied with the Bluetooth solution, however if they are
available they can be used in conjunction with the Bluetooth solution

2.4.1 Onboard Bluetooth/USB dongle

For communications to and from the PC a Bluetooth module is needed. Some recent laptops
and PCs are already wired for Bluetooth. Most current PCs and Laptops though will require a
Bluetooth connector such as the TDK Go Blue or EZURiO USB adapter. These plug into a
spare USB port and allow the computer to function as a Bluetooth device.

Note that it is not necessary to have a Bluetooth module on your PC to complete all
exercises.

2.4.2 Bluetooth headset

Whilst not required for the course access to a Bluetooth headset will allow testing of
strategies such as Pairing and creating Headset profiles using real life Bluetooth devices.

2.4.3 Bluetooth enabled phone

Whilst not required for the course, access to a Bluetooth enabled phone will allow testing of
strategies such as Pairing and creating Headset profiles using real life Bluetooth devices.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 11 Copyright © 2014-2017 Matrix TSL

3 Getting started

3.1 Setting up the hardware

3.1.1 E-Blocks solution

The e-blocks should be connected as shown below

PORT EB006 PIC Programmer

PORT A EB007 Switch Board

PORT B EB005 LCD Board

PORT C EB024 Bluetooth Board +
EB032 Voice Codec Board

PORT D EB014 Keypad Board

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 12 Copyright © 2014-2017 Matrix TSL

3.1.2 Setting up the EB024 Bluetooth board

Pre-assembled Bluetooth solution kits will come with the Bluetooth boards already connected
and configured correctly. Users connecting up a Bluetooth board should refer to the Bluetooth
board documentation for detailed instructions on setting up and configuring the board.

EB024 configuration PIC

Jumpers connected J9, J10, J11, J12

3.1.3 Adding the Voice Codec board

Bluetooth is widely used in Telecommunications making the EB032 Voice codec board a
natural companion to the Bluetooth board. The Voice codec board allows audio
communications to be converted to and from audio data signals that the Bluetooth board can
send and receive.

Note that the Voice codec is not required for all applications, only those that use voice audio,
such as phones and intercom units.

For pre-assembled Bluetooth solution kits the Voice codec boards will already be connected
correctly. For user adding a Voice codec board to a Bluetooth board are advised to consult
the Voice codec datasheet for connection and configuration details.

An important note to remember is that the Voice codec needs to be connected to the
Bluetooth 3.3 Voltage line.

3.1.4 Standard Settings

The following are the standard setting used in the Projects in this course unless otherwise
stated.
Ensure all E-blocks boards are wired up to power and ground if required.

PIC16F1937 Configuration settings:
The standard configuration used in this course is shown below. Unless specifically stated all
Examples and Exercises will use this configuration. You can set the configuration options via
Flowcode by using the ‘Configure’ tab in the ‘Project Options’ accessed via the ‘Build’ menu.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 13 Copyright © 2014-2017 Matrix TSL

3.2 Introduction to Flowcode

Flowcode is a flowcharting system for microcontrollers. Generally microcontrollers are
programmed in C (a hard language to learn) or Assembly language (an even harder language
to program in). Teaching microcontrollers generally required a large investment of time in
order to skill up students in the basics of the required languages before they were able to
tackle systems such as Bluetooth.

Flowcode is a much simpler and more intuitive method of creating programs. Based on
standard flowchart symbols and using drag and drop icons, a working program can be built in
minutes. Icons can be configured using dialogs that remove the chance of syntax errors or
invalid options being selected. Flowcharts can be visually followed, and tracked through
allowing users to see the wider picture as well as the single element. Most introductory
courses on programming use, or recommend creating, flowcharts as a precursor to writing
your final code, due to their ability to break down the program flow in a clear and
understandable manner. With Flowcode that IS writing your program.

A range of components can be used with programs that range from basic LEDs and Switches
through to full communications systems such as CAN, TCP/IP and of course Bluetooth. Once
again dialogs are used to remove the possibilities of syntax errors or incorrectly put together
function calls. Macro icons allow the user access to component functions allowing users to
perform tasks as varied as lighting a single LED to sending text to an LCD display, to
checking for incoming messages on a Bluetooth system.

The system is designed to be easy to understand and use, but with the depth and flexibility
required by today’s technical, educational and industrial market places.

3.2.1 Starting out in Flowcode

This course assumes a degree of familiarity with Flowcode. New users to Flowcode should
consult the Flowcode tutorials and introductory course prior to using Flowcode with this
course. Check the Matrix TSL website www.matrixtls.com and the Matrix Learning Centre for
course details and links.

3.3 The Bluetooth component

The Flowcode Bluetooth component can be added to your program from the Wireless section
of the Components toolbar.

Bluetooth component icon

http://www.matrixtls.com/

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 14 Copyright © 2014-2017 Matrix TSL

3.3.1 Properties and pin connection

The Bluetooth component has a number of properties
and connections that can be set by the user.
RTS Pin, CTS Pin and Number of scripts should be
self-explanatory (See the Bluetooth component Help
file for further details).
Hardware On/off sets whether Hardware Flow control is
used in communications. The important bit here is that
the Hardware On/Off setting needs to match that of
other devices it is communicating with.

The Scripts properties allow you to add up to four
scripts ready to be sent. Scripts are dealt with in further
detail during the course.

3.3.2 Bluetooth component macros

The Bluetooth component uses a number of macros to help program the Bluetooth device.
In brief the macros are:

 Initialize
Initialize the Bluetooth module ready for use.

 CreateCommand (Character)
Adds the character to the Command buffer.

 CreateCommandString (Data)
Adds the string to the command buffer

 SendCommand (ExpectEcho, SendCR)
Sends the Command Buffer

 SendScript (idx)
Sends Script idx

 WaitForResponse (response_code, timeout)
Waits for a response of type response_code for timeout ms.

 StringReceive
Checks to see if a response has been received.
Returns 0 or string length

 StringRead (idx)
Reads in char idx of the response.

Full details of the macros, their parameters and their uses can be found in the Bluetooth
component help file.

The Teaching exercises section of the course will introduce and explain the use of the macros
as they are needed during the exercises.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 15 Copyright © 2014-2017 Matrix TSL

The above two icons issue the command “AT+BTI”: to issue the command you first need to
create the command and then Send it.

3.3.3 Creating and sending AT scripts

The Flowcode Bluetooth component has a feature to aid in sending blocks of AT commands.
The component has a set of four Scripts that can be sent via a single macro call. The Scripts
are a feature of the Bluetooth component, not the Bluetooth specification, and have been
added simply as a convenience to the user.

The Send script command Creates and Sends each of the lines in the script text box in
sequence.

3.4 Testing the hardware

Detailed steps for a full test, including configuration and jumper settings can be found in the
EB024 Bluetooth board technical datasheet. This is available on your EB671 CD ROM. More
up to date versions may be available on our web site – www.matrixtsl.com.

Set up, configure and power up both Bluetooth solution kits.
Note the device addresses as displayed on the labels under both the Bluetooth board and
under the BLU2i module board. You can read these off and make a note of them – or you can
use a simple inquiry program to ascertain what the addresses of each module are. Students
are tasked with making a note of the Bluetooth addresses of each of the modules in Exercise
2.

Load the program BLUETOOTH_TEST.FCFX into both kits.

Both boards will send out an Inquiry command and will list the addresses of any Bluetooth
board in the vicinity that can be found. This includes the other solution kit. Both kits should list
the address of the other kit in the list of Bluetooth devices found.

http://www.matrixtsl.com/

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 16 Copyright © 2014-2017 Matrix TSL

4 Bluetooth theory and background

4.1 Introduction to Bluetooth

4.1.1 Brief history

“King Harald had this monument made for Gorm, his father, and Thyri his mother. That same
Harald who won all of Denmark and Norway, and made the Danes Christian.” So says the
Jelling Runestone. This Harald is none other than the legendary Viking king Harald Bluetooth
after which Bluetooth technology is named. Bluetooth started off as nothing more than a
project name, something to call the technology under development. But the name stuck. And
it is a fitting name. Just as the Viking age Bluetooth brought disparate nations together, gave
them a new creed and lead them on to greatness so does the modern day Bluetooth bring
disparate hardware devices together, give them a new protocol and expand their capabilities.
Today’s monument to Bluetooth though would not be runes carved on stone, but be the flurry
of electronic signals as the world communicates via Bluetooth.

N.B. The Bluetooth logo contains the runes H and B for Harald Bluetooth:

Bluetooth was introduced in 1998 by the Bluetooth Special Interest Group, a federation of
companies involved in communications, industry and business technologies. The variety and
number of companies involved has helped to make Bluetooth successful and widely adopted
by a number of different systems.

The original Bluetooth specification version 1.1 (1.0 and 1.0B being too restricted technology
wise for major development) was immediately successful. The specification was updated to
version 1.2 in 2003 with added features such as higher speeds and adaptive frequency
hopping. In 2004 the version 2.0 + Enhanced Data rate (EDR) specification was released.
V2.0+EDR is faster, uses less power and allows better communications between multiple
devices. Bluetooth continues to grow and adapt to the rapidly changing telecommunications
need of the modern marketplace.

4.1.2 Bluetooth concepts

 Bluetooth is designed to enable secure wireless data transfer between hardware
devices.

 By the use of a protocol data can be passed between the devices in a standard
manner.
This simplifies coding and testing as propriety code does not need creating.

 Bluetooth is fully specified which allows manufacturers to create Bluetooth compatible
hardware without requiring them to design and implement propriety high level
protocols. This also allows for network simplification as there are no problems with
competing propriety protocols or specifications.

 Communication is automatic once two Bluetooth devices are within range. This
means users do not need to run through set up procedures to start communicating.

 Bluetooth devices can be made secure and non-discoverable helping to eliminate
security threats from automatic communication. You get to decide if you want to be
on the network or not.

Bluetooth is essentially a wireless communications network with the ability to automatically
discover and communicate with new devices that come within range. This allows two key
benefits to the user.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 17 Copyright © 2014-2017 Matrix TSL

4.1.3 Bluetooth advantages

1) Cables are not required.

 No spaghetti cabling running all over the place. No unsightly messes. Nothing to
trip over or damage. And for uses such as automotive technology no wiring looms
to install and maintain/repair/replace.

 No physical constraints due to positioning of cables or network points, therefore
greater freedom of movement for devices.

 Communication is distance based so devices can be mobile.

 Devices can move from network to network without requiring infrastructure

2) Automatic discovery of other devices within range.

 No need for physical changes, such as new network points, to be made to
accommodate new devices. Therefore ease of use and ease of upgrading.

 Bluetooth security features allow you to set the device to respond to or ignore
other devices putting you in charge not the network.

 New devices can be added simply by coming within range so no need to edit or
change settings or anything to add new devices.

4.1.4 Bluetooth disadvantages

1) Complexity and reliability

 Cables may not be portable but they are simple and reliable. Complexity, as in
Bluetooth systems, brings with it increased risk of failure.

 The more complex a system is, like Bluetooth, the harder it can be to find and fix
faults.

2) Battery life

 Mobile devices are limited by battery life and recharging facilities.

 Loss of power during communications can occur.

 Cables may be standardized, but plug sockets and voltage levels are not. When
traveling a power socket adapter may be required.

3) Costs

 Bluetooth devices are often more expensive than conventional fixed solutions
such as a cable.

 An initial outlay may be required to convert from legacy equipment to Bluetooth
solutions.

 Higher repair costs.
4) Speed

 Bluetooth is slower than equivalent fixed solutions such as a direct cable.

 Bluetooth communications speed may be restricted by either baud rate
considerations, or by limitations of the data transfer speeds of the Bluetooth
protocol.

4.2 Protocols and the OSI model

Bluetooth works in layers based on the OSI model. The OSI model is a sequence of layers
used to define how data moves from the application to the physical sending of signals. This
process is repeated in reverse upon reception of data to change from the signals back to
application data. Each layer addresses fundamental areas of the communications processes.
By abstracting out the different parts of the communications process into OSI model based
layers, developers can implement their systems as a series of tasks each covering one or
more OSI layers. Standards can be implemented for specific tasks or layers creating a base
for developers to work on.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 18 Copyright © 2014-2017 Matrix TSL

The basic OSI model diagram can be seen below:

The OSI model is used to aid in separating out the various elements

The Bluetooth layers can be seen below:

i

The basic process is simple: raw data at the top needs to be converted into bits and bytes
that can be transmitted via radio signal and built back up into the raw data the application at
the other end can work with.

Transmitting involves breaking the data into chunks that can be sent and wrapping the chunks
of data with extra bits of information that can be used by that particular layer to check for
things such as errors or missing data. A single piece of data from an application may get
broken down into a number of different chunks each of which is surrounded by several
different wrappers.

Receiving involves a pass-the-parcel process with each layer unwrapping the top covering
and passing the packets up to the layer specified in that wrapper. At each step other functions
can occur such as error checking and assembling groups of packets into a larger packet that
will be passed on up once complete. Finally the packet will reach the application and the data
can be displayed to the user (or put through the speaker if audio etc.).

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 19 Copyright © 2014-2017 Matrix TSL

Not all layers need to be used. Some packets can skip several layers. The process depends
on the type of data being sent.

4.2.1 Application

The application is the element that is creating or using the data; be that raw data, audio
signals or textual information. This is the level that we users communicate with the system. If
we used the Post office as an analogy for Bluetooth the application would be the words that
we write or read.

Data input by us in whatever form, spoken or typed etc. is converted into a form suitable for
transmission, be that ASCII data, or audio format data. The data can then be sent down the
pipeline to be transmitted.

When data is received it is in a format that the application can understand. All the collating of
data packets and re-assembly has been done. This is just raw data ready to be used.

4.2.2 Bluetooth layers

OBEX/WAP/TCS/SDP/AUDIO
These are protocols for data. Rather than use custom data models it is good practice to make
use of existing protocols and standards. This allows you to communicate with other
applications via the same standard protocols. Data is converted to the protocol format ready
to be passed on down, or is converted from the protocol to the raw data used by the
application. By using such common protocols programming tasks are simplified and code is
made easier to transfer to other devices.

Some protocols, such as SDP and TCS, can be used to help configure Bluetooth operations.
SDP for instance allows applications to query the Bluetooth device as to what services it can
provide.

The protocols commonly used include:
OBEX – Object Exchange
WAP – Wireless Access Protocol
TCS – Telephony Control Specification
SDP – Service Discovery Protocol
AUDIO – direct audio signal as used for headphones

RFCOMM
RFCOMM, Radio Frequency COMMunication, is a special protocol. RFCOMM enables users
to use a standard serial COM port connection rather than a Bluetooth radio connection. These
are virtual COM ports, not physical COM ports. RFCOMM tricks the PC into believing its
virtual COM ports do exist in the same way as the real hardware ones. But when it receives
data it quietly sends it to the Bluetooth radio link. The end application is none the wiser; to it
it’s just a serial port it sent to. When it receives data it is just data from a serial COM port, the
Bluetooth side is totally hidden from it.

The great advantage of this is that the myriad of existing serial COM port technologies can be
used directly with no need of special adapters or brand new software. This can have
considerable effect on the cost and effort involved in upgrading or developing products that
currently use Serial COM port technology. The best Post Office analogy for RFCOMM is
email. It’s a letter-style communication but is not a letter. Emails are in the same format as a
letter, we write and receive them, but the process of sending them is not handled by the Post
Office. Similarly the process of sending data in RFCOMM serial communications is not really
serial communications even if it appears to be to the host controller or PC.

RFCOMM and the BLU2i module
The BLU2i module sits between the RFCOMM layer and the application layer. The module
handles the actual RFCOMM side of things, but requires the AT Commands as outlined in the
AT Command set to be sent to it so it not quite at the application level. This allows

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 20 Copyright © 2014-2017 Matrix TSL

programmers to concentrate on the communications strategy whilst leaving the RFCOMM
specifics to the BLU2i module.

L2CAP
The Logical Link Controller and Adaptation Protocol controls and coordinates data flow
creating virtual channels, sessions and file transfers. L2CAP is also the main packet
assembly areas breaking down the data into the individual packets ready to be sent to the
Baseband layer for preparation for transmission. On the return trip the L2CAP is the primary
reassembly area collating all the individual packets and reassembling the data from them. In
our Bluetooth Post Office this layer would be the pages of the letter, and the envelope it
comes in.

Host Controller interface
The Host Controller Interface links the PC or system to the Bluetooth hardware. Elements of
the HCI include device drivers required to run the Bluetooth hardware and its interface. Where
the Bluetooth hardware meets the data handling hardware is where the HCI resides.

Link manager
Link manager is a low level language for configuring and controlling the links.
Given the sophistication of Bluetooth transmissions with adaptive frequency hopping and a
wide range of available frequencies, the Link manager is a very useful tool to have. Link
manager aids at the network and data link levels. Link manager is like the Zip code or Post
code that the Post Office uses to automate much of its sorting.

Baseband and Link controller
The Baseband and Link controller, corresponding to the Data link level of the OSI model, is a
packet controller. It assembles data sent down to it into data packets ready for transmission
by the radio layer. The contents of the data and who sent it are irrelevant. All that matters is
that the Baseband layer can assemble it into data packets for transmission.

Data passed up to it from the Radio layer has its packet tags examined and is then shunted
upwards to the appropriate layer. The Baseband layer does not care what the data contains,
just who to deliver it too. In our Post Office analogy this layer is the primary sorting office and
the address on the letter.

Radio
The Radio layer is the Physical layer, the lowest level available in Bluetooth. At this level the
only real concern is with the actual radio signal. A radio connection is made and the data sent
across. The data packets assembled by the Baseband are sent out, and incoming data
packets received and passed on up to the Baseband layer.

4.2.3 Hardware details

Bluetooth hardware uses a number of common hardware and software features in its
communications that are useful to know.

Piconets
A Bluetooth device can be part of a network of up to 8 Bluetooth devices. The network is
formed of one device selected to be the Master device and up to seven other Slave devices.
This mini network is called a Piconet. Slaves can only send to the Master device not the other
Slaves. The Master communicates to the Slaves in a ‘Round robin’ system talking to each
Slave device in turn. So signals can be passed to another Slave device via the Master device,
but not directly.

Forthcoming Bluetooth devices will have the ability to expand this by communicating between
Piconets. One device will be the Master in one ring and a Slave in another allowing
communication between the two rings.

Paging and inquiry
All Bluetooth devices have the ability to become Master or Slave devices. The Master device
in a Piconet is the one that initiated contact, the Slaves those that responded. Contact is

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 21 Copyright © 2014-2017 Matrix TSL

initiated by sending out Inquiry signals to determine what devices are nearby. At the same
time devices are listening for contact from another device. If a device is found it can be paged
to establish contact and a Piconet either established, or joined if one already exists. If a
Master exists as is the case when joining a Piconet then the new device will be a Slave. If no
Piconet is already in existence then the device that initiated contact becomes the Master
device. Which one it is depends on who received the inquiry signal. As devices can join or
leave the network at will mechanisms exist to replace a master device that leaves the Piconet.

Radio specification
Bluetooth operates in the 2.45GHz ISM radio band. The band is split into 79 different
channels which Bluetooth hops between at 1600 times a second (Specification 1.1 and 1.2).
Later Specification 2 Bluetooth devices can be up to 3 times faster. Bluetooth hops
frequencies to prevent both interference from or to other systems on that same frequency
(e.g. a baby monitor), and to prevent Bluetooth devices hogging one particular channel and
thus jamming it for other devices. Obviously the system needs to know which channel to
change to. This is done at the radio level with the transmitter and receiver automatically
keeping pace with the frequency hops of the other devices in the network. Signals sent via the
radio level contain embedded data about the frequency hop pattern the device is using that
the other devices can use to work out which to go to next. Fortunately it is all done
automatically far down in the layers and so is not something you need to configure or program
for with the Bluetooth E-blocks board.

Due to the low power of the radio signal (about 1 milliwatt) the range is limited to about 30
feet, but this is more than enough for most Bluetooth devices.

Audio transfer
Due to its telecommunications roots Audio signals are a major part of many Bluetooth
devices.
In order to simplify Audio transfer, Bluetooth can fast track digitized audio signals through the
system to the audio output on the receiving device. Audio data can be sent via the normal
methods, and applications such as a Bluetooth MP3 player would generally use the normal
Application to Application route as it has better data integrity, and buffering data at the
receiving end will handle most latency issues. For direct communication such as a telephone
though the direct route is preferable as data quality – i.e. noise, is less of an issue than
latency – i.e. waiting to hear what was said as the data takes time to work through the
system. Signals are fed down to the lower layers directly, processed and compressed at the
Baseband level and sent to the receiver which sends the data direct from its Baseband level
to the audio output device.

Authentication and encryption
Bluetooth is a radio device. This makes it inherently unsecure as any device within
transmission range can listen in to the signal. Therefore security is a prime concern for
Bluetooth.

The primary security level is pairing. Devices need to be paired up which requires the address
and pass key for the device being paired with. Access to the address can be blocked by
devices, thus making pairing impossible, and the Pass key is not accessible by
communications so must be known for the device to pair. In practice this will be a PIN number
supplied with the product. So to pair a phone and a headset the phone you will need to enter
the headsets PIN number into the phone when prompted. No PIN – No communication.

Once paired communications can begin. Bluetooth devices can be set to both encrypt and
authenticate communications, thus making sure that data is from an approved device, and is
encoded making listening in fruitless. Any code can be cracked, but the Bluetooth encryption
and close range needed for listening in make it a very secure system.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 22 Copyright © 2014-2017 Matrix TSL

4.2.4 Profiles

Profiles are code based implementations for use with standard hardware structures such as
headsets or mobile phones. Conforming to a profile allows the hardware to make use of
features and behaviors appropriate for that type of device. For instance using the Headset
profile allows other units to communicate to the Bluetooth device using standard calls that are
part of the Headset implementation. The Headset profile will contain a number of functions
that are also in a Telephone implementation, but many of the Telephone functions will not be
in the Headset profile. This is because the Headset profile is a subset of the Telephone profile

The layering of profiles allows higher level profiles to use the same features as lower level
ones. The Fax profile for instance can use the File Transfer features that are part of the File
Transfer profile. It can also use the Synchronization profile features as well as this too is also
a sub set of the Generic Object Exchange profile that is a sub set of the Serial Port profile that
the FAX profile resides in.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 23 Copyright © 2014-2017 Matrix TSL

Part 2: Teaching exercises

5 Discovery

5.1 Theory: Finding other Bluetooth devices

To be able a Bluetooth device to communicate using Bluetooth there needs to be another
device to communicate to. With Bluetooth this can be any device within communications
range. The first step to establishing communications is to find that other device. The BLU2i
module has an inquiry command, AT+BTI that can be used to inquire about other devices in
range. The AT+BTI command sends a signal that is picked up by any Bluetooth device within
range. These Bluetooth devices can then elect to respond to this inquiry to let the inquiring
device know that they are out there. Devices respond to an inquiry by sending their device
address that can then be used later on to contact the receiving Bluetooth system.

5.1.1 The Inquiry command

The Inquiry command is AT+BTI<devclass> {Inquire}.

Full details of the command can be found in section 2.2.34 of the BLU2i AT Command set
document. This is included on the EB617 CD ROM. Whenever a new AT Command is
introduced refer to the AT Commands set document to gain an understanding of the new
command. Building up knowledge of the BLU2i AT Commands set is an important body of
knowledge. The AT+BTI command causes the Bluetooth module to transmit an Inquiry signal
to which other Bluetooth devices can respond. The optional <devclass> parameter is used to
filter which devices to check for and will be dealt with later. For now the base AT+BTI
command can be used. The AT+BTI command uses two S Registers to set the delay and
maximum number of responses. These can be left at their default values for the exercises
and examples in this course.

The AT+BTI command can receive the following responses:

 123456789012 – The 12 digit Hexadecimal address of the Bluetooth device
answering the inquiry. Note that not all devices within range may answer. Bluetooth
devices can be set to ignore the Inquiry command. This will be covered next chapter.

 OK – Received when the Inquiry is complete.

 ERROR 14 – An error has occurred. The Bluetooth module is not configured correctly
for sending the Inquiry command. (See the AT Command Set document for details).

A number of responses can be received: one address response from each device answering
the inquiry, and an OK message once all have been received. Checking can be done and if it
is not an OK response then the address can be displayed.

5.1.2 Additional Inquiry commands and the <devclass> parameter

In addition to AT+BTI there are a number of other related commands such as AT+BTIV and
AT+BTIN.

AT+BTIV <devclass> functions the same as AT+BTI except that the 6 digit <devclass> of the
responding device is added to the response message.
For example: 123456789012,123456

AT+BTIN <devclass> functions the same as AT+BTI except that the 6 digit <devclass> of the
responding device, and the name of the device is added to the response message.
For example: 123456789012,123456,”EZURIO blu2i RS232”

The Inquiry commands take an option <devclass> parameter that can be used to filter
responses. The <devclass> parameter is a 2 or 6 digit hexadecimal character value. To check
for device of a specific type use the full 6 character <devclass> for that device type. For

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 24 Copyright © 2014-2017 Matrix TSL

instance to check for all headsets within range you would use the <devclass> value 200404
i.e. AT+BTI200404. The 2 character major class code can be used to check for types of
devices such as Audio devices or PC peripherals. For example 20 will search for Audio
devices such as headsets phones and music players.

5.1.3 Discovery example

There are 4 Bluetooth devices within range, named Blue1-Blue4. The devices are set up as
follows:

Device Address Configuration

Blue1 00809872F3D4 Accepts Inquiry commands

Blue2 00809864DD44 Accepts Inquiry commands

Blue3 00809894E620 Does not accept Inquiry commands

Blue4 00809894E5D5 Accepts Inquiry commands

Device Blue1 transmits the AT+BTI inquiry command.

The following responses are received:

 00809864DD44

 00809894E5D5

 OK

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 25 Copyright © 2014-2017 Matrix TSL

5.2 Exercise 1: Discovering Bluetooth devices

5.2.1 Introduction

To be able to communicate to a Bluetooth device it is necessary to know that the device is
there. The first step in Bluetooth communications is therefore to inquire as to what devices
are present, and to be able to identify them so that communications can be established with
them.

5.2.2 Objectives

 Develop a program that performs a Bluetooth device Inquiry and displays the
addresses of any devices found on the LCD display.

 Display a ‘Finished’ message once all the responses have been received.

5.2.3 Pre-requisites

 An understanding of standard Flowcode Components and icons, such as Decision
icons and the LCD component and macros.

 An understanding of sending Bluetooth commands (See the Bluetooth Component
Help file in Flowcode for details on the macros involved)

 An understanding of receiving and retrieving message data (See the Bluetooth
Component Help file for details on the macros involved, and an outline of the relevant
strategies)

5.2.4 Hardware/Software requirements

The following items of hardware are required:

 Bluetooth solution for the Exercise program.

 1 or more additional Bluetooth devices for demonstrating the program.
Note: The second Bluetooth board from the Bluetooth solution can be used for this
Exercise.
The program BT_EX1_NODE_A.FCFX can be used to set up the board.

 Set hardware jumpers as specified in the Getting starting section.

 Set up Flowcode to configure the microcontroller as specified in the Getting starting
section.

5.2.5 Exercise information

The Inquiry command is AT_BTI. See the EZURiO AT Command set document (supplied on
CD ROM) for details on the AT+BTI command.

The expected responses are:

 A 12 digit device hexadecimal address from devices that respond.

 An ERROR message.

 OK once the Inquiry is complete.

The objectives can be broken down into the following:
Tasks

 Send the Inquiry command.

 Check for responses.

 Display the device address of any device that responds.

 Check for OK response.

 Display ‘Finished’ once the inquiry is complete.

Control structures:

 If the Inquiry is complete display a ‘Finished’ message.
Otherwise continue checking for further responses.

5.2.6 Learning outcome

Primary learning outcomes for this exercise are:

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 26 Copyright © 2014-2017 Matrix TSL

 Understanding basic AT commands

 Understanding the discovery process

 Creating and sending commands

 Checking for and retrieving responses

 Checking for specific responses (e.g. OK)

5.2.7 Additional tasks

The following are additional tasks that can be implemented to add extra features or improved
functionality to the basic program:

 Add a COUNT for how many addresses were found.

 Perform basic error checking on the CreateCommandString and SendCommand
macro.

 Check for an ERROR 14 response.

 Retrieve and display the device name(s) using AT+BTIM.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 27 Copyright © 2014-2017 Matrix TSL

5.3 Practical implementation: Discovering Bluetooth devices

5.3.1 Discovering and discoverable

Note that the programs created for Exercise 1 needs to be used in conjunction with the
program created in Exercise 2 to form a discoverable and discovering pair of boards. Using
the two exercises as a linked pair allows students to explore discovering and discoverability
using the same program from Exercise 1 in both Exercises, giving them continuity and the
ability to see the earlier Exercise in action.

The two programs from Exercise 1 and Exercise 2 will form the core part of most of the
subsequent exercises, additional commands being added in as the course progresses. As
such a continuity approach can be taken where the final programs from previous Exercises
can often be used as the starting point for the next. Using this approach allows students to
see how the process flows and grows as they progress through the exercises.

The program students need to write in Exercise 1 is to discover any other Bluetooth devices
in range. This necessitates a program in the corresponding Bluetooth device being active and
that Bluetooth device being discoverable. Before starting, students should download the
program BLUETOOTH_TEST.fcfx into both nodes. This will ensure that both nodes are
discoverable.

5.3.2 Planning the program

Before writing a program there needs to be an idea of what the program objectives are, and
an outline of how this will be implemented. Below is a rudimentary plane for an Inquiry
program.

The plan is to send out the inquiry signal, then to loop
through checking for any responses, displaying the
address of any device that responds, and a ‘Finished’
message once the inquiry is complete.

Hardware requirements to achieve the plan include a
Bluetooth module (obviously), and a display device that
is capable of displaying the entire 12 digit address of
the responding devices. Here we will be using the
EB005 LCD display.

Software requirements include:

 Sending an Inquiry signal

 Checking for responses

 Obtaining the response data

 Displaying the data.

5.3.3 Required macros

Assuming the student has a basic familiarity with
Flowcode and basic components such as the LCD
display then only Bluetooth specific macros need to be
covered.

The following Bluetooth component macros will be
needed for the program:

 Initialize

 CreateCommand

 CreateCommandString

 SendCommand

 StringReceive

 StringRead

Start

Stop

Send out an inquiry

signal for other

Bluetooth devices to

respond to

Display the

address

Found a

response?

Loop through

responses

YES

NO

Display

‘Finished’

message

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 28 Copyright © 2014-2017 Matrix TSL

The macros break down into a Send command set – CreateCommand /
CreateCommandString and SendCommand, and a Receive response set – StringReceive
and StringRead.

5.3.4 Initializing

The basic program flow is to start off by initializing
any components, and setting up any default variable
values. Add in an LCD Start macro, and a Bluetooth
Initialize macro.

The Bluetooth Initialize macro is required for all
programs that use the Bluetooth component, and
needs to be added to all Bluetooth programs. The
best place to add initialization macros is right at the
start of the program.

Add a calculation icon and enter default variable
values in here. This can be updated whilst
constructing the program to add in any new variables
that are needed. Setting default values is good
practice and can help avoid difficult to trap errors due
to erroneous values.

Once all the components and variables are set up the
first task can be considered, that of sending the
Inquiry command.

5.3.5 Sending a command

Before a command can be sent it needs to be
created.
The CreateCommandString macro takes the
Data parameter. Characters entered into the
CreateCommandString macro are added to
the Command buffer. Commands can be built
using a single CreateCommandString macro,
or by using several to build the Command up.

The Return value is 1 for success, or 0 for
failure to create the command. The Command
buffer is 32 characters in length, sufficient for
the needs of the BLU2i command set. If the
Command buffer is full CreateCommandString
will return 0 for a failure to create the

command.

In this case the inquiry command AT+BTI
needs to be sent. This can be built using a
single CreateCommandString macro. Add a
CreateCommandString macro to the flowchart.

The Data parameter is set to “AT+BTI” and a
RET_VAL variable is used for the return value.
The return value will not be checked in this
example to avoid making this first program
over complex. However in general it is good
practice to use the return value for basic error
checking to ensure commands are created
correctly.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 29 Copyright © 2014-2017 Matrix TSL

Once the Inquiry command is created it can then be sent using the SendCommand macro.
Add a SendCommand macro to the flowchart.

The SendCommand macro sends the
command that is currently in the
CreateCommand buffer. The return
value is 1 for a successful send, or 0
for failure to send the command. Once
again this particular example will not
check the return value in order to
simplify the program.

The parameter ExpectEcho is set to 1
as the Bluetooth module generally
echoes sent data back to the
transmitting module. This will generally
be set to one when sending
commands in this course. Exceptions
will be noted where they occur.

The parameter SendCR is set to 1 to
send a carriage return with the
command. This will generally be set to
one when sending commands in this
course. Exceptions will be noted
where they occur.

Finally add an LCD PrintASCII macro to display a message, such as "Starting inquiry", to say
that the Inquiry command has been sent.

5.3.6 Checking for responses

Once the inquiry has been sent the next step is to listen for responses. There can be a
number of responses so a loop structure is needed to go through them all. If an OK response
is received then the inquiry is finished and the loop can be ended.

The basic flow is a Loop icon set to
loop until a variable, FINISHED, is > 0.

To check for a Response a
StringReceive macro is used. The
StringReceive macro checks to see is a
message has been received and
returns the length of the message
string or 0 if no message string has
been received. The return value
variable, such as STR_LEN, can be
tested to see if it is greater than 0. If it
is a message has been received and
can be displayed.

Clear the LCD ready for the message.
The STR_LEN variable has the string
length so we can display the message
stepping through for STR_LEN number
of times and printing the character.
Create an INDEX variable set to 0 and
loop through incrementing INDEX while
INDEX is less than STR_LEN – the
size of the message.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 30 Copyright © 2014-2017 Matrix TSL

The StringRead macro returns the ASCII value of the character idx of the message. Using
INDEX for the idx parameter will return the message characters which can then be displayed
using the PrintASCII LCD macro.

A delay is required so that the response can be read.

Later programs will require us to use or interact with the addresses gathered here, but for this
example all we need to do is display them. A delay of 5 seconds should be sufficient to
demonstrate the addresses being received.

Responses need to be checked to
see if they are an “OK” response,
at which point the Inquiry is done
and we can finish the loop by
setting FINISHED to 1.

An OK command will have an ‘O’
and a ‘K’ as the first and second
characters of the response.
Retrieve the first character – idx 0
using the StringRead command. If
it is an ‘O’ then check the second
character – idx 1 of the message
to see if it is the ‘K’. If so set
FINISHED to 1 to end the loop.

 To round off the program a
‘Finished’ message of some sort is
required to inform us that the
Inquiry has completed.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 31 Copyright © 2014-2017 Matrix TSL

5.3.7 Running the complete program

The complete program can be found in example BT_EX1_NODE_B.FCFX.

For testing a Bluetooth solution board is required. See the Getting started section for details
on setting up the board and configuring the microcontroller.

In addition at least one other Bluetooth device needs to be active and discoverable. This can
be the other Bluetooth solution board, or a third party Bluetooth device. Be warned though
that not all Bluetooth devices will respond. When demonstrating the program it may be
prudent to test the Bluetooth devices prior to using them for the demonstration to check if they
can be discovered or not.

For example, if you have a Bluetooth-enabled mobile phone you will need to turn its Bluetooth
on and set the phone’s visibility so that it is not hidden.

The Bluetooth test file as detailed in the Getting started section is configured to respond to
Inquiries and can be used to set up the second Bluetooth board.

Compile and download the program to the microcontroller on one of the Bluetooth boards.
Briefly unplug the power, plug the power back in and press the Reset switch on the
Programmer board. This ensures that the Bluetooth module resets and restarts correctly.

The LCD will display “Starting Inquiry”. Next the LCD will display the 12 digit address of any
devices found, with a 5 second pause between each one. Finally a “Finished” once an OK
response is received indicating that the Inquiry is complete.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 32 Copyright © 2014-2017 Matrix TSL

6 Discoverability

6.1 Theory: Discoverability

The inquiry command covered in the previous chapter is sent to all Bluetooth devices.
However, not all devices will respond to the Inquiry signal. This is because Bluetooth devices
can be set hide themselves from other devices. Devices can also set themselves to be
discoverable, in which case they will respond to the Inquiry command.

6.1.1 Configuring for start up

Bluetooth devices have a range of configuration options that cover everything from Passkeys
and encryption to baud rate and the number of rings before answering. Defaults are generally
used so that devices will normally work ‘out of the box’. However it is good practice to
configure devices with the correct settings upon start up to ensure the device is operating as
desired.

In the BLU2i module these options can be configured using S registers, or via other AT
commands.

6.1.2 Using S registers

The EZURiO BLU2i module uses a set of onboard registers to store operational parameters
such as number of rings before answering, whether to echo a message, whether the device is
connectable and discoverable etc. The registers used to store the parameters are called S
Registers.

The S Registers are accessed using the AT command ATS<register>=<value>.
For example ATS512=3 will set the set S Register 512 to the value 3. Looking up S Register
512 in the AT Command Set document, along with a parameter value of 3, informs us that the
device will be configured to be connectable but not discoverable. To make the device
discoverable only we can check the parameter values for S Register 512 and see that a value
of 2 should be suitable.

There are a lot of S registers, details of which can be found in the AT Command Set
document.

The major S registers are listed in the Appendix under ATS<register> in the AT commands
section. There are a number of invaluable S Registers that will be used in most programs.
Taking the time to learn these S Registers and their values will aid in not only correctly
configuring devices, but in understanding how Bluetooth operates.

6.1.3 Using AT commands

There are a set of AT commands that configure the system in a specific mode. For instance
AT+BTO opens the device and makes it discoverable. These AT commands can be used to
quickly configure a device.

Examples of AT command configurations are:

Command Description

AT+BTG Makes the device Connectable but not Discoverable

AT+BTO Makes the device Discoverable

AT+BTP Device is Connectable and Discoverable

AT+BTQ Responds to enquiries only.

6.1.4 S Registers or AT Commands?

Whilst both approaches are viable this course will primarily use S Registers for configuring the
BLU2i module. Using S registers allows the user flexibility in that they can be set individually
unlike the general mode configurations that single AT command configurations use. Users
also have the ability to examine and look up the individual S Register settings to understand

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 33 Copyright © 2014-2017 Matrix TSL

what exactly is being configured - making them more transparent than the single AT
commands.

6.1.5 Making a device discoverable

For this exercise we are interested in making the device answer automatically and to be
discoverable and connectable, and for us to be able to send data to it. We also need to set
this configuration on the device so that we can turn it on and off without needing to
reconfigure every time.

Breaking the required configuration details down the following list is obtained:

6.1.6 Baud rate and settings

There are a number of S Registers that deal with the Baud rate and other hardware
connection details. However, these should be left at their default values for the exercises in
this course.

6.1.7 Discoverable and Connectable

 Discoverable sets whether the device will respond to an Inquiry signal

 Connectable sets whether the device can be connected to.
Both are set by the same S Register so need to be considered together. The S Register 512
takes a value 0-7 that specifies the power up state of the device. There are a number of
complex states, however for now we can simplify it down to 3 states that could be useful for
us.

 2: set the device to be discoverable only.
Useful when a device needs to be the one that initiates contact, not receive it. Such
as a paging system.

 3: set the device to be connectable but not discoverable.
This state allows a device to hide from random Inquiries, but to be connectable by
devices that already know its connection details (i.e. its Bluetooth address). Useful for
secure communications.

 4: set the device to be both discoverable and connectable.
As the plan is to connect to the Bluetooth device in subsequent exercises an S
Register value of 4 will be used for most exercises in this course.

6.1.8 Number of rings before answering

Just like an answering machine waits for a number of rings before cutting in automatically, so
does Bluetooth. S Register 0 specifies the number of rings before a call is answered. Setting
S Register 0 to a value of 1 configures the device so that the call is answered on the first ring
– i.e. immediately.

6.1.9 Whether to allow remote command for data sending

One important configuration item is whether the device will allow remote commands or not.
Remote commands are when another device issues commands direct to this device. This
allows the other device to send data, instructions, and to configure this device.
S Register 536 set to 1 enables Remote commands. 0 disables it.

6.1.10 Saving the configuration

The AT command AT&W causes the current S Register values to be written to Non Volatile
Memory so that they are retained when the power is turned off. This allows for a device to be
configured for a particular task, and to retain those settings.

6.1.11 Implementing the configuration

Once the configuration details are set, the device can be rebooted using the ATZ command to
allow the new settings to take affect and configure the device accordingly.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 34 Copyright © 2014-2017 Matrix TSL

6.1.12 A basic configuration set up

A simple set of commands to make the device discoverable are:

AT&F*
ATS0=1
ATS512=4
ATS536=1
AT&W
ATZ

AT Command S Register Description

AT&F* Return to factory settings

ATS0=1 0 Number of rings before automatically answering. 1 =
1 ring i.e. straight away.

ATS512=4 512 Specifies power up state. When set to 4 the device
will be connectable and discoverable.

ATS536=1 536 Allows the device to enter Remote Command Mode.
I.e. to be connected to so that AT commands can be
sent to it.

AT&W This command causes the current S registers to be
written to Non Volatile memory so that they are
retained when the power is turned off.

ATZ Reboot to allow the earlier settings to activate and
configure the device.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 35 Copyright © 2014-2017 Matrix TSL

6.2 Exercise 2: Discoverability

6.2.1 Introduction

For a device to be found it needs to be discoverable. A Bluetooth device that is discoverable
is able to respond to an Inquiry command from another Bluetooth device.

6.2.2 Objectives

 Develop a program that configures the Bluetooth device to be discoverable. This id
the complimentary exercise to Exercise 1.

6.2.3 Pre-requisites

 An understanding of the Discovery process as detailed in Exercise 1. In particular the
ability to be able to recognize an Inquiry command.

 An understanding of receiving and retrieving message data (See the Bluetooth
Component Help file for details on the macros involved, and an outline of the relevant
strategies)

6.2.4 Hardware/Software requirements

The following items of hardware are required:

 Bluetooth solution for the Exercise program.

 1 or more additional Bluetooth devices for demonstrating the program.
Note: The second Bluetooth board from the Bluetooth solution can be used for this
Exercise.
The program from Exercise 1 can be used to send the Inquiry command, or the test
program BLUETOOTH_TEST.fcfx can be used to set up the board. See the Getting
started section for details.

 Set hardware jumpers as specified in the Getting starting section.

 Configure the microcontroller as specified in the Getting starting section.

6.2.5 Exercise information

The configuration data to be sent:
AT&F*
ATS0=1
ATS512=4
ATS536=1
AT&W
ATZ

The objectives can be broken down into the following:
Tasks

 Send the configuration commands.

 Check for messages.

 Display any messages.

Control structures:

 Checking for and displaying responses.

6.2.6 Learning outcome

Primary learning outcomes for this exercise are:

 Understanding the discovery process.

 An understanding of how to configure the BLU2i device.

 An understanding of S Registers.

 Checking for and retrieving responses.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 36 Copyright © 2014-2017 Matrix TSL

6.2.7 Additional tasks

 Referring in the Bluetooth module manual S Register settings and make the
Bluetooth module non-discoverable.

 What implications does this have for the person using the equipment after you?

 Using the programs in Exercise 1 and 2 make a note of the Bluetooth addresses of
each of the Bluetooth modules – you will need these in the next exercise.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 37 Copyright © 2014-2017 Matrix TSL

6.3 Practical implementation: Discoverability

Exercise 2 accompanies Exercise 1 in that having shown how Discovering devices work in
Exercise 1 the next step is to show how to make devices discoverable. In addition,
configuration methods and the use of S Registers are discussed. It is important to stress that
Just as the AT commands used here are particular to the specific module used (The EZURiO
BLU2i device) so are the S Registers are also a feature of the BLU2i chip and not an inherent
part of Bluetooth. Different chips may have different registers, or even use none at all.
However the general principles are the same i.e. setting how many rings to wait, or electing to
make a device discoverable.

Before starting connect the USB lead to the second Bluetooth system – you can leave the
program from Exercise 1 in the first Bluetooth system and we will use it to test if the program
created here works.

6.3.1 Continuing development

The Students programs created for Exercise 1 can be used in conjunction with the program
created in this exercise to form a discoverable and discovering pair of boards.

The two programs from Exercise 1 and Exercise 2 will form the core part of most of the
subsequent exercises, additional commands being added in as the course progresses. As
such a continuity approach can be taken where the final program from previous exercises can
often be used as the starting point for the next.

6.3.2 Configuring the Bluetooth device

For this Exercise the Bluetooth device needs to be configured to be discoverable and
connectable. We will not be connecting to it in this particular Exercise; however we may as
well set up this basic configuration now.

For this exercise use the following configuration commands:
AT&F* - optional
ATS0=1
ATS512=4
ATS536=1
AT&W
ATZ

These commands will set the device up to answer immediately, and to be both discoverable
and connectable.

6.3.3 Single commands and scripts

The Commands can be implemented one of two ways: Single commands or via scripts.
Single commands can be created and sent using the CreateCommand and SendCommand
macros detailed in Exercise 1. In addition scripts can be used.

Scripts are a set of command entered into a text box. Scripts can be accessed from the
‘Properties Panel’ when the Bluetooth component is selected. There are 4 separate script
properties. The Script Count property can be set from 0-4 allowing use of 0-4 scripts in the
program.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 38 Copyright © 2014-2017 Matrix TSL

Text can be entered into the text boxes on the script properties.
Any text can be entered, AT commands or data for instance. The
script is sent one line at a time as if each line were a separate
command that had been created and sent using
CreateCommand / CreateCommandString and SendCommand.

Scripts are sent using the SendScript macro. SendScript takes a
single parameter idx, the number of the script to send. The idx
value will be 1-4 depending on which script is to be sent. The
optional return value is 0 for success or 255 for any problems.

The advantage of using scripts is that you can send a whole group of commands with one
single macro. The disadvantage is that the commands in the scripts are static and cannot be
built up in the program.

For instance we can set the device to answer
immediately using ATS0=1 in a script, but could
build a command such as ATS0=<MY_VAR>
using a variable MY_VAR to set S Register 0 to
a program variable that depends on user input.
Scripts are extremely useful for blocks of
commands that will not vary with program start
up. This makes scripts ideal for startup
configuration settings.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 39 Copyright © 2014-2017 Matrix TSL

Adding the text…:
ATS0=1
ATS512=4
ATS536=1
AT&W
ATZ

…to a script allows us to send the whole set of configuration setting commands in one go.

Once the device has been configured to be
discoverable nothing else is actually needed
for this Exercise. However to allow users to
see that the device has received an inquiry
command a loop can be added to check for
messages and to display them on the LCD.
This is a simplified version of the loop
created in Exercise 1. There is no need to
check for the OK message, or to do anything
other than simply display any incoming
messages.

6.3.4 Running and demonstrating
the program

For best effect the program built here can be
used with the Inquiry program built in
Exercise 1.
The program from Exercise 1 can be used in
the first Bluetooth board, and the Exercise 2
program can be used with the second
Bluetooth board.

 Create the program, noting as you do the 12 digit device address of the Bluetooth
board that will be used with the Exercise 2 program.

 Download and run Exercise 2 on the Bluetooth board whose address you have noted.

 Download and run the Inquiry program created in Exercise 1 to the other board.

 Monitor the LCD Display on the board to be discovered. When the AT+BTI Inquiry
command is sent it will be displayed on the LCD.

 Monitor the LCD on the Inquiry program board. When the discoverable board is sent
the Inquiry command it will respond by returning its 12 bit address (the number you
noted down earlier). Check the LCD display to see that the address is displayed.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 40 Copyright © 2014-2017 Matrix TSL

7 Connecting Bluetooth devices

7.1 Theory: Connecting – Addresses

As no physical connection exists between two devices all communications are capable of
being picked up by any other Bluetooth device. An immediate problem is how to communicate
with one particular device and not inadvertently communicate with other devices.

All Bluetooth devices have an address, a unique 12 digit hexadecimal number. This address
is the same number that is returned in response to an inquiry command. This address can be
either retrieved via an inquiry command, or can be stored in the program if a specific device
address is to be used and is known in advance.

If a Bluetooth device is connectable and the address is known then other Bluetooth devices
can initiate connection to that device. Generally devices will be discoverable and connectable
so that the address can be determined from an Inquiry command. However it is possible for
devices to be connectable, but not discoverable. For instance a set of phones that are
designed to communicate only with each other may be set to be connectable but not
discoverable. The pair of phones have the address of each phone in memory so that a
discovery command is not needed, and the phone is ready to start communicating with its
partner device.

The basic connection command is:
ATD<bt_addr>

Where <bt_addr> is the 12 digit hexadecimal address of the device to initiate connection with.

The Bluetooth addresses of the BLU2i modules are set in the factory and cannot be changed.
The address is written on both the underside of the Bluetooth E-Block and the underside of
the BLU2i module itself. Note that if the BLU2i modules are replaced or swapped for any
reason, the address displayed on the underside of the Bluetooth E-Block will not be the same
as the address of the BLU2i module itself.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 41 Copyright © 2014-2017 Matrix TSL

7.2 Exercise 3: Connecting to a device

7.2.1 Introduction

If the address of a Bluetooth device is known, and the device has been configured to be
connectable, then that device can be connected to.

7.2.2 Objectives

 Develop a program in one Bluetooth system (node B) that connects to another
Bluetooth system (node A), and displays the reply to show that the connection has
succeeded.

 Develop a program in one Bluetooth system (node A) that allows another Bluetooth
system (node B) to connect to it. This program is supplied for you in
BT_EX3_Node_A.fcfx.

7.2.3 Pre-requisites

 An understanding of the Discovery process as detailed in Exercise 1 and Exercise 2.

7.2.4 Hardware/Software requirements

The following items of hardware are required:

 Bluetooth solution for the Exercise program.

 1 or more additional Bluetooth devices for demonstrating the program.
Note: The second Bluetooth board from the Bluetooth solution can be used for this
Exercise.
Download the program BT_EX3_Node_A.fcfx into this second system.

 Set hardware jumpers as specified in the Getting Starting section.

 Configure the microcontroller as specified in the Getting Starting section.

7.2.5 Exercise information

The Initiate Connection command is:
ATD<bt_addr>
Where <bt_addr> is the address of the second Bluetooth board.

Set up two programs: one in Node B to Dial a second Bluetooth device in Node A. When you
issue the ATD command the receiving node will send the acknowledgement CONNECT
123456789012. Display this on the LCD display of node A.

7.2.6 Learning outcome

Primary learning outcomes for this exercise are:

 Connecting to another Bluetooth device.

7.2.7 Further work

The LCD display only has 16 characters. Devise an extension to the code in
BT_EX3_Node_A.FCFX so that all any text overflow is displayed on line 2 of the display.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 42 Copyright © 2014-2017 Matrix TSL

7.3 Practical implementation: Connecting

Like previous exercises students actually need to develop two programs – one in the
Bluetooth device initializing the communication, and the second in the device receiving the
initial communication.

This exercise is a quick and simple one from the workload point of view, but has a number of
technical pitfalls to be aware of.

1) Device address. The example program BT_EX3_Node_B.FCFX uses the address of a
Bluetooth device used for testing here at Matrix. This will need to be edited to match the
address of the board that is to be used with the example program. For this you should use the
address you found in Exercise 2.

Be clear about which is the sending node and which is the receiving node and what their
addresses are.

2) The Bluetooth device to be connected to needs to have been configured to be connectable.
Once again the program BT_EX3_Node_A.FCFX has been set up with this issue in mind.

3) Once a connection has been made there needs to some way of verifying to ourselves that
the connection has been made. The program BT_EX3_Node_A.FCFX is set up to display any
messages sent, so we can simply send a message and check that it is received by the other
device. The program you write should display the returning message from node A.

A delay is needed after the connection
command has been sent to allow time for
the connection messages to be handled.
No error checking is done at present. The
program assumes that the connection will
succeed, which may not always be the
case. A better method would be to use
responses to error check the process.
Responses and error checking will be
dealt with in a later chapter.

7.3.1 Resetting the systems

The Bluetooth board EB024 is not equipped with a reset button. The only mechanism of
issuing a reset is to remove power. If you have programmed the Bluetooth module to carry
out some activity then pressing the reset button on the Multiprogrammer board will not
necessarily reset the Bluetooth module.

For this reason when developing pairs of programs it may be necessary to remove power
from the system and reboot the Bluetooth modules.

For this exercise we recommend that you remove power from both systems each time you
download a program. Then power up the receiving system, press reset and give it a few
seconds to set up. Then power up the transmitting system, press reset and give it a few
seconds to set up.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 43 Copyright © 2014-2017 Matrix TSL

8 Passkeys and Pairing

8.1 Theory: Passkeys and Pairing

Bluetooth communicates via radio which is an inherently unsecure transmission medium. Any
device with in transmission range can receive the signals sent to any other device. Using
unique address solves the problem of specifying which device you intend to communicate to,
but other methods are needed to prevent unauthorized access to a device.

The basic security system used with Bluetooth is called Pairing. Pairing is when two devices
connect to each other using both a device address and the devices secret “link key” known as
the Passkey. The Passkey cannot be retrieved from another device in the same way the
address can. To be able to connect to a device you need to know the Passkey number for
that device.

8.1.1 Sending the Passkey command

To set up a device so that it can be paired with a Passkey needs to be set up for the device.
The command to set up a Passkey is:

AT+BTK=”<passkey>”
Where <passkey> is the Passkey PIN number. The Passkey is a 0-8 digit number. Setting the
Passkey to a blank string clears the current passkey. Generally Passkey PIN numbers are
supplied with documentation that accompanies a particular device. Device PIN numbers
should be kept safe, just like you would with bank card PIN numbers.

For the programs in this course a simple Passkey of “1234” will be used for all exercises

8.1.2 Initiating pairing

To pair to a device the device initiating contact needs to send two commands
A passkey command

AT+BTK=”<passkey>”
Where <passkey> is the passkey value of the device to be paired with.

An Initiate Pairing command is:

AT+BTW<bt_addr>
Where <bt_addr> is the address of the Bluetooth device to be paired with.

8.1.3 When to send the Passkey command

The Passkey command can be sent before or after the Initiate Pairing command. If the
Passkey command is sent before then Pairing will be initiated upon sending the Passkey
command. If the Passkey Command has not been sent when an Initiate Pairing command is
received the device to be paired to will send an unsolicited PIN? response which will need to
be checked for by the program. Pairing will not proceed until the Passkey is sent. Responses
will be covered in a later chapter, so for now send the Passkey command before the Pairing
command. An Initiate Pairing command on its own is not enough. A passkey command needs
to be sent as well.

In many instances, such as when pairing a mobile phone with a headset, the Passkey will be
in the product documentation and the program will prompt you to enter the Passkey.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 44 Copyright © 2014-2017 Matrix TSL

8.2 Exercise 4: Passkeys and Pairing

8.2.1 Introduction

Devices can be paired with each other for communications. Pairing requires the address of
the device to pair with, and a Passkey value to establish contact. Here you will need to
develop two programs – one that establishes what the pass key is in a system, and the other
that connects to that system and sends data to it.

8.2.2 Objectives

 Develop programs for two Bluetooth systems that allow pairing to take place. Develop
a program for Node A that assigns a Passkey of “1234”, and make it discoverable.
Develop routines that show any data sent to the node on the LCD. Develop a
program for node B that Pairs with node A using Node A’s address and Passkey.

 Once Paired establish a simple communication between the systems that shows
communication is taking place – i.e. a counter on the sending count data as a single
byte which is also displayed on the receiving node.

8.2.3 Pre-requisites

 An understanding of the connection process as detailed in Exercise 3.

 An understanding of creating, sending and receiving commands as detailed in
Exercises 1 and 2.

8.2.4 Hardware/Software requirements

The following items of hardware are required:

 Both Bluetooth solutions are required for this Exercise.

 Solution 1 will initiate pairing.

 Solution 2 will be paired to.

 Set hardware jumpers as specified in the Getting starting section.

 Configure the microcontroller as specified in the Getting starting section.

8.2.5 Exercise information

The Initiate pairing commands are:

 AT+BTK=”<passkey>”
Where <passkey> is the passkey value of the device to be paired with.

 AT+BTW<bt_addr>
Where <bt_addr> is the address of the second Bluetooth board.

Once a connection has been established loop through and send the numbers 0-9 to
be displayed on the other device.

8.2.6 Learning outcome

Primary learning outcomes for this exercise are:

 Understanding of the pairing process.

 Understanding of the role of the Passkey.

 Understanding of the security implications of the Passkey.

8.2.7 Further work

 Using a keypad and an array variable, develop two programs that allow the passkey
of both the receiving system to be set, and that allows the passkey used by the
transmitting system to be set.

 Develop a program that displays the ‘friendly name’ of all other Bluetooth devices in
the locality.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 45 Copyright © 2014-2017 Matrix TSL

8.3 Practical implementation: Passkeys and pairing

8.3.1 The basic program

Pairing is a key process in Bluetooth operations. The pairing process is relatively straight
forward on one level, but complex on another. Pairing involves the sending of both the
Passkey and an initiate pairing command.

AT+BTK=<passkey>
AT+BTW<bd_addr>

For Example:
AT+BTK=”1234”
AT+BTW012345678912

If the details are known in advance then they
can be simply entered into the program and
the commands built and sent. If the passkey
and address are not known in advance then
they need to be established.

The boards in the Bluetooth solution have the
device addresses on labels on the bottom of
both the BLU2i module board, and on the
bottom of the E-block. You may wish to note
down the addresses for the various boards.

To demonstrate the connection is working a
simple 0-9 repeating signal can be sent to be
displayed on the receiving device.

Note: The delay icons used in this chapter
allow for the devices to finish communicating
with each other. A better method would be to
know when a process is complete, or more
importantly if it has failed. This can be done
with responses, which will be covered next
chapter.

8.3.2 Advanced features: Choosing what device to connect to

Device addresses can be retrieved using the Inquiry command. However knowing if we need
to connect to connect to device 007284972989 or 00234869030 is another matter. The
AT+BTI Inquiry command can be extended to retrieve extra information above and beyond
the 12 digit address. AT+BTIN retrieves not only the device address, but the friendly name of
the device as well. The friendly name is a device description string that is easier for users to
understand than the device address.

For example:
012345678912, “TDK BLU2i RS232”
012345678912, “TDK Headset S102”

Displaying the friendly address can help users select the correct device out of a list. The
practicalities of displaying the friendly name are a simple modification to the display response
code from Example 1. Adding in the command space the first 14 characters can be displayed
on the top line of the LCD, and the rest on the bottom line by moving the cursor when the first
14 characters have been displayed.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 46 Copyright © 2014-2017 Matrix TSL

In addition we can add the 12 address characters into an array, storing the current address
for further use. This can be done at the same time as we are printing out the characters. Add
the first 12 characters to the current address.

Obtaining the passkey is more difficult as this it cannot be retrieved via an AT command. For
the examples used in this course the Passkey ”1234” is used throughout. In practice a
passkey may need to be obtained from the device documentation and either entered in the
program code, or entered into the program manually.

8.3.3 Resetting the systems

The Bluetooth board EB024 is not equipped with a reset button. The only mechanism of
issuing a reset is to remove power. If you have programmed the Bluetooth module to carry
out some activity then pressing the reset button on the Multiprogrammer board will not
necessarily reset the Bluetooth module.

For this reason when developing pairs of programs it may be necessary to remove power
from the system and reboot the Bluetooth modules.

For this exercise we recommend that you remove power from both systems each time you
download a program. Then power up the receiving system, press reset and give it a few
seconds to set up. Then power up the transmitting system, press reset and give it a few
seconds to set up.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 47 Copyright © 2014-2017 Matrix TSL

9 Checking responses

9.1 Theory: Checking responses

In the previous exercise the pairing worked but only with a large delay put in to allow the
devices to work through the pairing messages and responses. This is all well and good if we
know that the devices will pair correctly, and can afford to wait until it is definitely done.
However what happens if there is a problem, or the connection cannot be established in the
delay we set? A more useful method would be to monitor the process checking for the right
response at the right time.

When a command is sent a response is generally sent to that command. For many
commands and occasions the response will be an ‘OK’ message. However many commands
have specific responses. The Discover command for instance sends addresses as
responses, and once finished then it sends an OK response.

9.1.1 Solicited and unsolicited responses

When a response is the direct result of sending a command it is a solicited response i.e. a
response that is expected. For instance sending an AT+BTK=”1234” command will result in a
solicited response of “OK”.

Sometimes a response is sent that is not in response to a specific command. This is an
‘unsolicited’ response. For instance when an initiate pairing command is sent an expected
response (solicited) of “OK”.will be sent. However if the Passkey has not been provided an
unsolicited response of “PIN?” will also be sent. This is an unsolicited response as it is not in
response to the command sent but is instead a prompt to the device to provide extra
information, in this case the Passkey value. Unsolicited response can be sent at various times
to indicate either a need for further interaction, or to provide additional feedback. Examples
include the CONNECT and RING responses sent during the establishment of
communications to inform the other device of the current status of the operation.

Unsolicited responses are sent when required. Using the pairing example from above, if the
Passkey command had been sent before the Initiate pairing command then an unsolicited
“PIN?” Response would not be needed and would not therefore be sent.

Unsolicited responses are detailed in the AT Commands Set document.

9.1.2 Response handling macros

There are two macros available to help with handling responses: StringReceive and
WaitForResponse.

The StringReceive macro checks to see if a response has arrived and returns 0 or the length
of the response message. StringReceive was used in the section on Discovery and details of
using StringReceive can be found in the Help file in Flowcode. StringReceive is useful for
general message monitoring when messages may be present. Exercise 1 demonstrates
StringReceive in action monitoring incoming messages for Addresses.

WaitForResponse pauses program flow until a response message is received.
WaitForResponse takes the parameters response_code and timeout.
The response_code parameter indicates the type of response to wait for. This takes the form
of a 1-7 value that refers to the following response types:

Response type response_code value Notes

OK 1 Can means no more than
confirming the command has been
successfully received.
For Example An OK with
AT+BTW<bt_addr> does not
confirm pairing occurred; only that

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 48 Copyright © 2014-2017 Matrix TSL

the command to initiate pairing was
received.

ERROR <xx> 2 See AT Command Set document
for details of ERROR code.
Examples include:
09 = Invalid Bluetooth address
16 = Pairing in progress
24 = Remote address same as
local address
33 = S Register value is invalid

CONNECT <bt_addr> 3

NO CARRIER 4

AUDIO <string> 5 <string> indicates the status of the
Audio channel. Can be:
ON, OFF or FAIL

PAIR <n> <bt_addr> 6 Values for <n>:
0 = success
1 = timeout occurred
2 = Other unsuccessful outcome.

RING <bt_addr> 7

The timeout parameter is the number of milliseconds to wait before timing out and assuming
that no response is coming. Normally this will be used to help indicate if a command failed or
not.

The return value for WaitForResponse is as follows:

 Returns zero to indicate that the specified response has been received.

 Returns 0xFF for timeout or an illegal response code

 Returns the number of characters received if an unexpected response is received

WaitForResponse can be used for both error checking and sequence control. Sequence
control can be accomplished by checking for the expected response type. For example an
Initiate pairing command should return a PAIR <bt_addr> response (response_code value 6).
Error checking can be done by checking for timeouts or unexpected responses. If a timeout
occurs the expected response has not arrived and appropriate action needs to be taken.
Generally a timeout will indicate a communications failure at that stage of the sequence. If an
unexpected response occurs if can be further checked to see if it requires action (e.g. it is an
unsolicited response) or if it is an error message that needs processing or reporting.

The WaitForResponse command does not look for a specific error number, address or audio
state. WaitForResponse indicates if a response of the specified type was received or not. To
find check the specific details of a response the StringReceive command can be used to
retrieve the response for further checking.

For example, to find out a specific Bluetooth address after receiving zero (success) from a
WaitForResponse (3) command, send the StringReceive command. The received string will
then be the Bluetooth address.

9.1.3 Command and response sequences

When a command is sent one or more responses are returned. For example when a set of
Pairing commands are sent. The sequence will be something like:

AT+BTW0123456789012 - Command sent (request to initiate pairing)
OK - Response (Pair command received and is ok).
PIN? - Unsolicited response (PIN number request)
AT+BTK=”1234” - Command sent (Passkey)
OK - Response (OK)
PAIR 0 012345678912 - Unsolicited response (Pair succeeded)

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 49 Copyright © 2014-2017 Matrix TSL

Note the two unsolicited responses. The AT protocol is a Command/Response protocol. A
command is responded to. In the case of the AT+BTW<bd_addr> command the response is
OK to indicate that the command has been received. However the command itself requires
further action when it is processed. These actions cause the device to issue an unsolicited
response. In this case firstly a request for the passkey to be sent. Later ,once the Passkey
has been sent and responded to with an OK to say that the command has been received; a
further unsolicited response is sent to inform the device that Pairing was successful.

Side note: For some commands, such as AT+BTW<bt_addr> the OK response confirms that
the command was received correctly. It does not mean that the request was successful.
Subsequent responses may need to be examined to indicate that the command was
successful.

Details of the expected responses can be found in the AT Command Set documentation.
By checking that the expected response has arrived it is possible to determine whether an
error has occurred, or when something unexpected has occurred. For instance a return value
of 255 (0xFF) indicates that a timeout has occurred, possibly due to a connection issue. A
response to an Inquiry with AUDIO or CONNECT 123456789012 would indicate that
something has gone wrong with the sequence as a different response was expected.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 50 Copyright © 2014-2017 Matrix TSL

9.2 Exercise 5: Checking responses

9.2.1 Introduction

When a device receives a command it returns a response. By checking these responses it is
possible to both monitor for any errors that occur and to wait for expected responses before
continuing a sequence of commands.

9.2.2 Objectives

 Develop programs for two Bluetooth systems that allow pairing to take place. Develop
a program for Node A that assigns a Passkey of “1234”, and make it discoverable.
Develop routines that show any data sent to the node on the LCD. You can use the
program from Exercise 4 for this.

 Develop a program for node B that Pairs with node A using Node A’s address. Don’t
use the Passkey with the Pair command – alter the program you wrote in Exercise 4
to include routines that provide the Passkey when prompted. Once Paired wait for
and check the responses to ensure that the pairing completes successfully.

 Report any errors that occur on node B

9.2.3 Pre-requisites

 An understanding of the Pairing process as detailed in Exercise 4.

 An understanding of the WaitForResponse macro as detailed in the Bluetooth
component help file.

 An understanding of the Response types as detailed in the Bluetooth component help
file.

9.2.4 Hardware/Software requirements

The following items of hardware are required:

 Both Bluetooth solutions are required for this Exercise.

 Solution 1 will initiate pairing.

 Solution 2 will be paired to.

 Set hardware jumpers and configuration as specified in the Getting starting section.

9.2.5 Exercise information

The Initiate pairing commands are:

 AT+BTK=”<passkey>”
Where <passkey> is the passkey value of the device to be paired with.
Expected response is OK.

 AT+BTW<bt_addr>
Where <bt_addr> is the address of the second Bluetooth board.
Expected response is OK.

 Once Pairing has occurred an unsolicited response PAIR <bd_addr> will be sent.

 If the Initiate connection command is successful a CONNECT <bd_addr> response
will be returned.

 Load the program BLUETOOTH_TEST.FCFX on Bluetooth Solution 2.

 A list of response types can be found below.

9.2.6 Learning outcome

Primary learning outcomes for this exercise are:

 Command and response sequences.

 Response types.

 Error checking and sequence monitoring.

 Unsolicited responses.

Response type response_code value

OK 1

ERROR <xx> 2

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 51 Copyright © 2014-2017 Matrix TSL

CONNECT <bd_addr> 3

NO CARRIER 4

AUDIO <n> <audio state> 5

PAIR <bd_addr> 6

RING <bd_addr> 7

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 52 Copyright © 2014-2017 Matrix TSL

9.3 Practical implementation: Checking responses

Two important bits of information to note down are the Bluetooth Device addresses, and the
Passkeys. For this exercise it is assumed that the general Passkey “1234” will be used.
However the Bluetooth devices will need to be modified accordingly.

The task requires two programs, one to initiate pairing, and one to display data sent to the
paired device. The Pairing programs developed in Exercise 4 can be used as the base of
Exercise 5 allowing the student to see how their code progresses.

The display program only needs to display data sent, so the display program from Exercise 4
can be used as is.

The main focus will be with the Pairing program, and expanding that program to include
response checking.

9.3.1 Establishing the expected sequence

Before a sequence can be error checked the pattern of commands and expected responses
must be established.

AT+BTK=”1234” - Passkey command
OK - Response. Type 1.
AT+BTW0123456789012 - Initiate pairing command
OK - Response. Type 1.
PAIR 0 012345678912 - Response. Type 6.
ATD0123456789012 - Initiate connection command
CONNECT 012345678912 - Response. Type 3.

The sequence, with types and suggested timeout values is as follows:

SendScript(1): ATZ – Reset

WaitForResponse(1,200)
 OK response from ATZ

SendScript(3): AT+BTK="1234"

WaitForResponse(1,10)
 OK response from Passkey command

SendScript(2):AT+BTW00809894E5DF - Pairing command

WaitForResponse(1,10)
 OK response from Initiate pairing command
….

WaitForResponse(6,200) – Unsolicited PAIR command sent when pairing complete.

SendScript(4):ATD00809894E5DF
WaitForResponse (3,200)

9.3.2 Additional sequence considerations

The above sequence is a simple one as all the Response type are covered and can be waited
for. However if the Passkey command has not been sent when the Initiate pairing command
is sent then an unsolicited PIN? Response will be received after the solicited OK response.
The PIN? Response will be registered as an unexpected response and will needs to be
trapped and the appropriate action taken (namely sending the Passkey command). It is
recommended that students send the Passkey first to simplify the program initially. Advanced
students can then tackle the unsolicited PIN? response as both an exercise in handling
unsolicited responses and in advanced error checking.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 53 Copyright © 2014-2017 Matrix TSL

9.3.3 Using the WaitForResponse macro

Once a sequence is known adding WaitForResponse macros is relatively straightforward.
Add the macro and edit the properties so that the expected response code parameter uses
the correct response type, and an appropriate timeout value is used. Set a return value
(RETVAL is the generic return value variable used throughout this course) for the error
checking. The timeout value can vary depending on factors such as baud rate and speed of
operation. The example values set out below are the ones used successfully when
developing this course and can be used as guides to setting the values.

Example timeouts values used for the example programs is:

Response Value in milliseconds

Awaiting general OK response 10 - 100

ATZ reset OK response 200

PAIR command 200

CONNECT response 200

RING 200

AUDIO 200

9.3.4 Error checking methodology

A basic error checking methodology has been adopted here. As the commands are created
and sent they are first checked using the return value from the functions. A failure here
indicates that there is a problem with either creating or trying to send the command.

Once a command has been sent
the WaitForResponse return
value can be checked to see if it
received a response of the
specified type (0 for success). If
not an error message is
displayed on the LCD detailing
the stage at which the sequence
failed. A connection icon is used
to jump to the end of the
program to exit without running
the rest of the program.

If a successful response has
been received this too may need
further checking to determine
that the action was both
successful and that the result
was what was expected.

The WaitForResponse (6,200) command will only wait for the “PAIR” response (plus a
following space character), which on its own does not indicate a successful pairing.
Immediately following the reception of “PAIR” is a single digit representing the outcome of the
pairing attempt. 0 means success, 1 means timeout and 2 means another unsuccessful
outcome. Following this single digit is a space, then the 12-digit hexadecimal string
representing the address of the other Bluetooth device. In this example both the outcome and
the address need to be checked to ensure that we have successfully paired to the correct
device.

Advanced error checking could involve separate user macros testing the responses and
giving more detailed information – e.g. displaying ERROR <nn> codes, or checking for a NO
CARRIER and giving users the option to turn on the other device and try again etc.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 54 Copyright © 2014-2017 Matrix TSL

10 Command modes - Sending data and commands

10.1 Theory of Command modes

Once a connection has been made data and commands can be sent to the device. Data sent
by the sending device will be received on the receiving device and can be retrieved with
StringReceive. StringRead can then be used to access the raw data. Raw data is not handled
by Bluetooth but by the program code itself.

10.1.1 Data mode, Remote and local command mode

 Data mode should be used when sending data – not when sending commands.

 Local command mode is where commands are sent to a remote device.

 Remote command mode is where commands are issued to the receiving device.

Data mode is established by default upon connection. To return to Data mode from one of the
other command modes, send the AT command ATO. Data mode is basically the sending of
raw data that the application on the receiving device can use. The sending program and the
receiving program are responsible for understanding, handling and formatting this raw data.

Local command mode is established by sending the escape ^^^ sequence whilst in Data
mode.
Entering Local Command Mode allows your program to alter settings and perform specific
Bluetooth actions such as ending the communication link or establishing an audio channel.

Remote command mode is established by sending the !!! escape sequence whilst in Data
mode. In remote command mode commands subsequently sent are processed by the
receiving device. For instance an ATS0=3 command would set the S Register 0 on the
receiving device to value 3. The local sending device would not be affected, only the remote
receiving device.

Remote command mode allows for the configuration of the remote device and/or the querying
of the device, but only if the remote device is set up to allow remote capture. Remote capture
is controlled by the value of S Register 536. The default S Register 536 value of 0 blocks
remote capture. Setting S Register 536 to 1 allows remote capture. The AT command for
setting the register to allow remote capture is:
ATS536=1

10.1.2 Local command mode +++ and ^^^

AT commands were originally designed for use with PC Modems. The local command mode
escape sequence for modems is generally +++. In order to avoid confusion with Bluetooth to
modem signals the Bluetooth escape sequence is generally ^^^. The escape sequence
character is set in S Register 2. This allows the character to be modified if required. However
using the default ^ character is highly recommended.

10.1.3 Guard gaps and escape sequences

Local and remote command modes are established by sending an escape sequence. An
escape sequence differs from a command by sending a particular character a set number of
times. For Bluetooth the escape character needs to be sent three times. To guard against a
command mode being activated by the inadvertent sending of the three escape sequence
characters, a guard gap is used. The guard time is set in S Register 12 and can be from 40-
5000ms (with a resolution of 20ms). The default guard time is 100ms. The three characters
must be sent with a gap between them of at least <guard time> ms or more.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 55 Copyright © 2014-2017 Matrix TSL

10.2 Command modes: Exercise 6

10.2.1 Introduction

As well as sending data Bluetooth devices can send commands either to themselves, or to
another device. This Exercise will cover sending Data, local and remote commands.

10.2.2 Objectives

 Develop a program that pairs two Bluetooth devices and enters Local command
mode.

 Send the ATI4 command to retrieve that retrieves the address of the active device.

 Examine which address was retrieved. Was it the address of the device receiving the
ATI4 command or sending ATI4?

You should use the programs you have previously developed as a starting point.

10.2.3 Pre-requisites

 An understanding of the Pairing process as detailed in Exercise 4.

10.2.4 Hardware/Software requirements

The following items of hardware are required:

 Both Bluetooth solutions are required for this Exercise.

 Solution 1 will initiate pairing.

 Solution 2 will be paired to.

 Set hardware jumpers and configuration as specified in the Getting starting section.

10.2.5 Exercise information

The Local Command mode command is:

 ^^^Local command mode.

Note that Local command mode needs to be sent with guard time delays:
<guard time><Esc char><guard time>< Esc char ><guard time>< Esc char ><guard time>

Load the program BLUETOOTH_TEST.FCFX on Bluetooth Solution 2.

Once Local command mode has been established send an ATI4 command to retrieve and
display the Bluetooth address of the device sent the commands. This will help show which
device responded to the command.

10.2.6 Learning outcome

Primary learning outcomes for this exercise are:

 Command modes.

 Escape characters and guard times.

 Local command mode.

10.2.7 Further work

Develop your program further to set the number of rings the slave device answers on to 5.
Use your previous experience to check that you have made the settings correctly.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 56 Copyright © 2014-2017 Matrix TSL

10.3 Practical implementation: Command modes

Due to the guard time requirement, the !!! or ^^^ command cannot be sent in a script. The
script will not wait the required guard gap time between characters and so will fail to be
recognized as the command mode escape sequence.

A command mode escape sequence will be structured as follows:
<guard time><Esc char><guard time>< Esc char ><guard time>< Esc char ><guard time>

Delay 1s
Create + send ^
Delay 150ms
Create + send ^
Delay 150ms
Create + send ^
Delay 150ms / WaitForResponse – OK

Note that a delay of at least guard time is
required. Assuming the default 100ms delay
the 150ms delay used here should suffice. If
the guard time were longer the delays would
need adjusting accordingly. The ^ escape
character is then sent, and the next guard time
delay added until all three escape characters
have been sent. An OK response will be sent
once the command mode escape sequence
has been sent, so the WaitForResponse will
need to wait for a type 1 (OK) response.

10.3.1 Which device is being sent
commands?

When first investigating Local and Remote
command modes it can be confusing to figure
out which device is being sent the command.
Is local command mode affecting Device A?
Or is the command affecting Device B that
Device A is communicated with? One
command that can help us figure that out is
the ATI<n> command.

ATI<n> requests information from the device.
The information requested depends on the
value of <n>. The full list of <n> values, and
the information retrieved can be found in the
AT Command Set document. Below are a few
that you may find useful.

 0 – Returns the product name/variant.

 4 – Returns the 12 digit device
address.

 9 – Returns 1 if connected otherwise
returns 0.

 12 – Returns the last ERROR
response number.

For this exercise ATI4 is ideal as it returns the device address allowing us to determine which
device responded to the command. By sending the ATI4 command in local command modes
we can see which device responded.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 57 Copyright © 2014-2017 Matrix TSL

When in Local command mode send the ATI4 command and display the resulting device
address. Before running the program note down which device address you expect when and
see if you get it right.

10.3.2 Program overview

The objective is to check the Local command mode and request the address of the device
executing commands. Data or information is requested and the results monitored. A simple
task list outline is shown to the left. The Send Local command and Send Remote commands
need to have the guard gaps and separate send commands. As such they are prime
candidates for implementing as user macros.

In order to investigate which device is currently receiving commands the information request,
ATI4, is sent to retrieve the currently active device’s address. Once this has been retrieved it
can be displayed on the LCD Display. The code snippet below shows the outlines of a macro
designed to get the device address. Note the use of a Display response macro. Putting the
display response code in a separate macro allows it to be called to show the result of specific
actions, such as here, and to be used in a general response monitoring loop at the end of the
program.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 58 Copyright © 2014-2017 Matrix TSL

11 Audio communication

11.1 Theory: Audio communication

Audio is handled in a special way in Bluetooth. Bluetooth has the ability to fast track audio
signals through the system allowing for low latency communications i.e. voice
communications. An audio specific AT command is available that opens or closes the fast
track audio channel.

Latency is the delay between the data being sent and the data arriving. For real time voice
communications this is a major issue as waiting several seconds to hear what the other
person said is confusing and difficult to work with. The Bluetooth fast track allows for much
lower latency speeds but at a cost in quality as higher quality means more data to send. For
voice communications the quality is normally more than adequate.

This assumes that the application is for voice communications such as a phone call, or
walkie-talkie, where low latency is more important than quality. For quality based systems
where latency is not an issue, such as sending music data for an MP3 music player standard
data transfer would generally be used in preference to the audio fast track, with the data
being buffered at the receiving end before being played.

11.1.1 Hardware requirements

The Blu2i Bluetooth device is capable of sending audio signals but is not an audio device.
The raw audio signals need to be converted to a signal that the Bluetooth device can handle.
In the Bluetooth solution this is accomplished by the Voice Codec board. To send and receive
audio a microphone and or headphone/speaker is required. The Voice Codec board has
connections for both a microphone and a headset via music industry standard 3.5mm jack
plugs. Two sets of headphones with attached microphones are supplied with the Bluetooth
solution for use with the Voice Codec boards allowing voice communication to be tested.

11.1.2 Establishing an Audio connection

Before audio can be accessed, the receiving device needs to be in Local command mode.
Local command mode is covered in Exercise 6. The Local command mode is entered using
^^^. Remember that Guard gaps are required between the escape characters. Once Local
command mode has been established the audio commands can be sent.

The audio command is:

AT+BTA<n>
Where <n> is 0 for Audio channel closed, or 1 for Audio channel open.

The first step is to connect to the other device. Once data communication between the two
devices has been established Local command mode can be entered using ^^^.

Once in local command mode the audio channel can be enabled using AT+BTA1

An OK response is sent confirming that the audio command has been received. Next the
device will attempt to open the audio channel and will send an additional AUDIO response
message indicating the result of the audio channel command.

The AUDIO response will be either AUDIO ON or AUDIO OFF indicating the audio state, or
AUDIO FAIL if the audio state could not be set for any reason. The response will need
checking to ensure that the audio channel is now on.

Once the audio channel is on audio signals are fast tracked through the Bluetooth system by
the Bluetooth devices. Assuming both devices have a microphone and a headset voice
communications will now be possible. Check headset and microphone connections and
volume controls to set appropriate volume levels. The Bluetooth audio channels do not have
volume controls so the attached hardware volume controls will need to be used.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 59 Copyright © 2014-2017 Matrix TSL

Once the audio channel is established it will run automatically until turned off. Further
commands are not required. At this stage you can re-enter data mode if you also intend to
transmit other data by sending the Data mode command ATO.

To terminate the audio connection you need to be in Local command mode. If the device has
been switched out of Local command mode it will need to be reestablished (^^^).

In Local command mode the audio channel can be closed with the command AT+BTA0.
An OK response is sent indicating that the audio command was received, followed by an
AUDIO response of AUDIO ON, AUDIO OFF or AUDIO FAIL indicating the new audio
channel state.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 60 Copyright © 2014-2017 Matrix TSL

11.2 Exercise 7: Audio communication

11.2.1 Introduction

A prime use of Bluetooth technologies is in telecommunications. For many Bluetooth is
synonymous with the Mobile Phone and the Bluetooth headset. In this exercise we will be
setting up voice communications as used by mobile phones.

11.2.2 Objectives

 Develop a pair of programs that create a voice communications link between two
Bluetooth devices.

11.2.3 Pre-requisites

 An understanding of the Pairing process as detailed in Exercise 4.

11.2.4 Hardware/Software requirements

The following items of hardware are required:

 Both Bluetooth solutions are required for this Exercise.

 Solution 1 will activate the voice communications.

 Solution 2 will receive the voice communications.

 Set hardware jumpers and configuration as specified in the Getting starting section.

 The headphone/microphone sets are required for voice communications.
o See the Voice Codec board datasheet for connection information

 Configure the Codec boards as detailed in the Codec board test procedure.

11.2.5 Exercise information

The Audio command commands are:

 AT+BTA1 – Open Audio channel.

 AT+BTA0 – Close Audio channel.

For audio communications the initiating device needs to set the receiving device to Local
command mode (^^^ - See Exercise 6).

11.2.6 Learning outcome

Primary learning outcomes for this exercise are:

 Principles of Audio communications.

 Opening the Audio channel.

 Closing the Audio channel.

11.2.7 Further work

 The basic program outlined above may work well for direct voice communications.
However it has no way to turn the audio on or off. Use two switches to function as
Audio On and Audio Off switches allowing voice communications to be controlled by
the microcontroller.

 The code examples discussed assume that the audio channel is functioning and is
enabled or disabled correctly via the AT+BTA<n> commands. This may not always
be the case. An option for advanced users is to extend the program to include error
checking. The WaitForResponse macro can be used to wait for response_type
AUDIO, but does not detail if it is FAIL ON or OFF. Testing can be done by waiting for
an AUDIO response. If the response is other than AUDIO and error has occurred and
needs to be dealt with. Check the rest of the response to ensure that an ON (AUDIO
ON) was received and the audio channel is enabled. If AUDIO OFF or AUDIO FAIL
are received report the problem to the user on the LCD.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 61 Copyright © 2014-2017 Matrix TSL

11.3 Practical implementation: Audio communications

11.3.1 Audio setup and considerations

The Voice Codec boards and headphones/microphones are required. Connect the Voice
Codec boards to the Bluetooth boards using the Voice Codec documentation, and the notes
from the Getting started section, to ensure that the boards are connected and configured
correctly.

The combined headphone and microphone sets supplied with the Bluetooth solutions use
industry standard 3.5mm stereo jack plugs. The jack plugs are marked with standard

Headphone and Microphone icons. They are also colour coded to match the standard
connection colours of Green for headphones and Pink for Microphones. The jack plugs need
to be firmly pushed in until they can be pushed no further. Use the volume controls to set the
volumes for the headphones and microphone. The T/P MIC jumper needs to be in MIC for the
headphone and microphone to be used. Note that mono jack plugs use the headphone slot.

11.3.2 Solo audio testing

Whilst two people allows voice communications to be tested using both devices in the same
way as a regular phone call there is a trick to enable one person to test voice
communications. Something that is useful for home study, or testing. On one board use the
standard set up with a set of Headphones and microphone. On the other board put the T/P
MIC jumper in T/P (Test Point mode). Connect the Headphones T/P OUT test point to the
Microphone T/P IN test point. Then when an audio signal is sent (i.e. you speak into the
microphone) it is received at the other end, output through the headphones test point and
back in through the microphone test point to be sent back to the first board and received in
the Headphones.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 62 Copyright © 2014-2017 Matrix TSL

11.3.3 Using headphones/microphones and the Codec board

Before you start to develop programs please make sure that the volume potentiometers are
turned up to maximum and that the headphone / microphone jacks are in the correct sockets.

11.3.4 Program notes

Other than the audio board set up there is nothing in this exercise that has not been covered
before. Therefore the exercise should be relatively straightforward.

The Data and Command mode programs can be used as basis for the programs required for
this exercise.

Establish a connection; enter Local command mode and send the AT+BTA1 command to
enable the audio channel.

For this example use Switch A0 on port A as a signal to end the audio communications.
Monitor Switch A0 and send the Audio channel off command AT+BTA0 when it has been
pressed.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 63 Copyright © 2014-2017 Matrix TSL

12 Profiles – Headsets and Telephones

12.1 Theory: Profiles

Bluetooth devices can use Profiles. Profiles are a specified implementation of Bluetooth with
known features and functions. Declaring a Bluetooth device as conforming to a Profile allows
the device to implement the profile specification, meaning that it will operate in a standardized
manner. This in turn allows other devices to communicate with it in this standardized manner.

The Profiles are based around the requirements of a standard device for accomplishing a set
task. The Headset profile for instance is based on an Audio device with a volume control and
a command button. Standardized commands, features and functions allow devices to
communicate to any Bluetooth headset in the same manner. It does not matter who made the
headset, and what chip or other hardware they used for it, it is a headset and so can be
accessed as one.

Profiles are layered so that common shared features are implemented in a lower layer of the
profile system. This allows for commonality amongst devices easing design and use. For
instance the Camera is part of the Basic Imaging Profile so will be expected to implement the
Basic Imaging Profile specification elements. It is also a part of the Generic Object Exchange
profile, so will need to implement that specification also. The next layer down is the Serial Port
profile, which too will need implementing. Finally all the profiles are part of the Generic
Access profile which has elements which also need implementing.

12.1.1 Profile specific features

Part of the profile implementation includes profile specific features. The exact nature and
details of these can be found in the Profile specific documentation. The headset profile
document is included on the Bluetooth Solution CD to show the kind of profile specific
features available.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 64 Copyright © 2014-2017 Matrix TSL

For example, the Headset profile provides for the implementation of microphone and speaker
volume control. In the case of the Headset several profile specific AT commands are specified
for the implementation:

 AT+VGS=<n> Sets the Headset Speaker gain to <n> (<n> = 0 to15)

 AT+VGM=<n> Sets the Headset Microphone gain to <n> (<n> = 0 to15)

 AT+CKPD=200 Command used to indicate Headset Command button has been
activated.

A copy of the Headset profile document is available on the accompanying CD in the
Datasheets folder. The document contains details of the headset profile implementation
including the additional AT commands available for the headset.

These additional commands aid in configuring and using the headset. Their precise
implementation may differ between Headsets, but all Headsets are required to implement
them. By this we mean that a headset manufacturer can choose to not have a Headset
Microphone gain control on the physical hardware, but he must provide functions that can
receive and handle the AT+VGM signal, if only to respond with an OK and ignore it otherwise.
This allows other Bluetooth devices to be able to use the profile specific features knowing that
which Headset it is and how it handles it does not matter.

12.1.2 Device class

The profile that a device is implementing is set in the devices Device class. The Device Class
informs inquiring devices what classes the device conforms to. This information can then be
used to decide if further communications and a possible connection are needed.

12.1.3 Major and Minor Device Classes

Profiles allow the device to specify major and minor classes that the device belongs to.
Examples of major classes include:

 Miscellaneous

 Computer (Desktop, Laptop, PDA etc.)

 Phone

 LAN and Network Access Point

 Audio (headsets, speakers, stereos etc.)

 Peripherals (Mouse, Keyboard Joystick etc.)

 Imaging (Printer, scanner, camera etc.)

 Unclassified

The number and type of minor classes depends on the major class.
Examples for the Audio major class include:

 Hands-free

 Headset

 Loud speaker

 Head phones

 Car audio

 Camcorder

12.1.4 Device class values

The Device Class details are recorded in a 6 hexadecimal character value. The Device Class
number is created from adding together various bits of a binary pattern from various tables for
the separate parts. The creation of Device Class codes is quite complicated as a number of
tables are required. (Details can be found in the Bluetooth specification documents.)

Example major device codes include:

 Miscellaneous 00

 Computer 01

 Phone 02

 LAN /Network Access point 03

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 65 Copyright © 2014-2017 Matrix TSL

 Audio/Video 04

 Peripheral 05

 Imaging 06

 Wearable 07

 Toy 08

 Unclassified 1F

Examples of full Device class codes are:

 Headset 200404

 Loudspeaker 200414

 Mobile phone 400204

 Camera 080520

12.1.5 Setting the Device Class

The AT Command AT+BTC<devclass> is used to set the Device Class.
The AT Command AT+BTC? is used to retrieve the Device Class value.
The value for the Device Class is stored in S Register 515.
The default value for the Device Class on the BLU2i chip is 001F00 – Unclassified.
Further details on the AT+BTC commands can be found in the AT Command Set document.

To set the device Class to a Headset for instance you would use the command:
AT+BTC200404

12.1.6 ATD and the <uuid> parameter

In addition to the Device Class the UUID parameter also requires to be set. The UUID
parameter is used with the Instigate Connection command ATD to help form the search
parameters for devices of that type.

The full description of the Instigate Connection command ATD is:
ATD<U><Y><bd_addr>,<uuid>
<U> and <Y> are authentication and encryption parameters, which we shall be discussing
next chapter.
<bd_addr> is the device address, which has been covered previously.
<uuid> is the Universally Unique Identifier parameter used to select which class of device to
connect to. If not specified the value stored in S Register 101 is used (default is: 1101 – Serial
Port profile device).

The traditional UUID parameter used in programming is 128 bits long, but is shortened in use
with Bluetooth to just 32 bits - 4 hexadecimal characters long. The following is a list of some
useful UUID values:

 Serial Port 1101 (Default)

 LAN Access Using PPP (Point-to-Point Protocol) 1102

 Dialup Networking 1103

 IrMC Sync 1104

 OBEX Object Push 1105

 OBEX File Transfer 1106

 IrMC Sync Command 1107

 Headset 1108

 Cordless Telephony 1109

 Intercom 1110

 Fax 1111

 Audio Gateway 1112

 WAP 1113

 WAP_CLIENT 1114

To set the UUID parameter use the ATS<n>=<m> command.
For example to set the UUID for an Intercom the command ATS101=1110 would be used.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 66 Copyright © 2014-2017 Matrix TSL

12.2 Exercise 8: Headset profile

12.2.1 Introduction

A prime use of Bluetooth technologies is in telecommunications. For many Bluetooth is
synonymous with the Mobile Phone and the Bluetooth headset. In this Exercise we shall look
at the second of these devices - the Headset.

12.2.2 Objectives

 Develop a program which implements the Headset profile and sets up a
communication between two audio enable d Bluetooth systems.

12.2.3 Pre-requisites

 An understanding of the Pairing process as detailed in Exercise 4.

 An understanding of Bluetooth Audio communications as detailed in Exercise 7.

12.2.4 Hardware/Software requirements

The following items of hardware are required:

 Both Bluetooth solutions are required for this Exercise.

 Solution 1 will be the phone part of the system.

 Solution 2 will be the headset part of the system.

 Set hardware jumpers and configuration as specified in the Getting starting section.

12.2.5 Exercise information

The headset related commands are:

 AT+BTI<devclass> to filter the Inquiry for specific Device Classes

 AT+BTC<devclass> to set the Device Class

 ATS101=<uuid> to set UUID value.

 AT+VGS=<n> Headset specific Speaker gain command <n> = 0-15

 AT+VGM=<n> Headset specific Microphone gain command <n> = 0-15

 AT+CKPD=200 Headset specific Command Button command

Configure one Bluetooth as a headset device.
Set up Switch A0 to be the Headset Command button.
Use the Headset button as an Answer/Hang-up button (enable/disable Audio channel).
Set up Switches A1 and A2 to be Headset speaker volume +/- controls respectively.
Use an initial Speaker volume level of 8.
Display the current Speaker volume on the LCD display.

12.2.6 Learning outcome

Primary learning outcomes for this exercise are:

 An understanding of profiles.

 An understanding of the Headset profile.

 Filtering for particular profiles.

12.2.7 Further work

Use the keypad to develop a system that provides the functionality a two way intercom. You
should use the keypad or switch module to develop functions for ‘call’, and ‘terminate’. Use
the LCDs on each system to show system status.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 67 Copyright © 2014-2017 Matrix TSL

12.3 Practical implementation: Profiles

12.3.1 Implementing the Headset profile

A classic example of a profile is the Headset profile. Profiles are widely used so easily
understood. The Headset is a relatively straightforward profile to implement. It has several
additional AT commands that demonstrate how profiles can have profile specific command.
Being AT commands the commands are easy to use with the BLU2i device. In general the
Headset is well suited as a first example of profiles.

12.3.2 Setting up the headset

There are a number of settings to be implemented to set up a Headset profile. The
<devclass> and <uuid> parameters both need setting. Also items such as how many rings
before answering may need setting, allowing users the options to answer via a handset, not
the headset, or to check caller ID etc. on a mobile phone before deciding to answer.

The <devclass> is set via the AT+BTC<devclass> command. For the headset use
<devclass> = 200404.

In a similar manner the <uuid> can be set in S Register 101. The Headset <uuid> is 1108.

An example script to make the headset device discoverable and connectable would be:

ATS0=10 (10 rings to answer)
ATS536=1 (Remote command
mode enabled)
ATS512=4 (Connectable and
Discoverable)
ATS101=1108 (set uuid to Headset)
AT+BTC200404 (set devclass to
headset)
AT+BTK="1234" (set Passkey)
AT&W (store settings in NVM)
ATZ (reset)

12.3.3 Special commands for the
headset profile

The Headset profile for instance has a number of
extra commands that can be used that are
particular to the headset profile.

AT+CKPD=200 - Headset button command.
Note the constant value of 200 used for this
particular button.
AT+VGS=<n> - Headset Speaker gain (i.e.
volume control)
AT+VGM=<n> - Headset Microphone gain

The two volume controls have obvious functions,
but the headset button control simply reports the
button press. It is up to the users own code to
check for and react to this command. One
obvious use for the Headset button is as an
Answer/End call button.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 68 Copyright © 2014-2017 Matrix TSL

12.3.3 Sending profile related commands

The profile related commands are triggered programmatically. The program needs to monitor
switches or sensors to detect the appropriate input and then send the corresponding
command. For the Headset command button the command is already set, but for the two
volume commands a value <n> is required.

Whilst the actual value of <n> can be stored as a basic BYTE variable the value needs to be
converted to ASCII for sending. A simple method is to add the character ‘1’ if needed (i.e. <n>
is equal to or greater than 10) and to add the ASCII value of the 0-9 digit.

12.3.4 Checking for profile related commands

Checking for profile related commands is relatively straightforward. Use the StringReceive
command to get the initial message and its length. StringRead can then be used get
characters for checking. If characters 3-6 of the message are CKPD, VGM= or VGS= then
one of the Headset commands has been sent. If VGS or VGM the remaining characters are
the value for <n> and will need to be converted from ASCII to a numeric BYTE value. The
length of the message (as returned by StringReceive) will show if <n> is one or two digits.

12.3.5 Filtering for particular devices

In order to narrow down an Inquiry command search to only those devices that are required,
such as when searching for any Headsets the optional <devclass> command can be used as
a filter mechanism. When the Inquiry is sent only those devices that match the filter will
respond. I.e. a Camera will ignore an Inquiry sent with a Headset parameter even though it is
in range and discoverable.

<devclass> is an optional parameter to the AT_BTI command. It can be either 2 or 6
hexadecimal characters in length. The full 6 characters are used to filter for devices that
match that specific device class. If a particular class such as headsets or cameras is required
then the full device class for the required device class can be used. If a major class is
required, such as Audio or Computer, then the 2 character Major device class value can be
used instead. Any device that corresponds to the major class will respond. For instance if an
Audio class inquiry was sent not only would Headsets respond, but also other Audio devices
including Speakers, microphones and Camcorders etc.

Examples:
To send an Inquiry command to find Headsets profile devices the <devclass> parameter
would be set to: 200404 the Device class value for Headsets. E.g. AT+BTI200404

To send an Inquiry looking for any Audio based profile device, including Headsets and other
Audio devices the <devclass> parameter would be set to: 04. E.g. AT+BTI04

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 69 Copyright © 2014-2017 Matrix TSL

13 Trust and Security

13.1 Theory: Trust and Security

Radio communications are inherently vulnerable. Any device capable of receiving radio signal
from the same frequency bands can listen in to the signal. Radio communications companies
have over the years put considerable effort into ways to send signals securely. And just has
much effort has been devoted at times to breaking that security. Enigma and Bletchley Park
may be the two most famous names from the age of communications warfare, but their
descendants still live on. Sadly the most significant security threat is not from Allied
intelligence, but from the more prosaic but insidious hackers and virus writers that plague the
internet. Also whilst the French resistance may not be monitoring your signals maybe your
business rivals would like to? Details of contacts, deals, offers and prices are priceless
ammunition to the cut and thrust of the board room, and the humble phone, with its array of
Bluetooth add-ons, is right in the front line.

13.1.1 Security in general

So how does Bluetooth go about ensuring that you are secure?
There are three complementary systems in place.

 Hardware

 PIN numbers

 Authentication, Encryption and Trust

At the hardware level Bluetooth employs frequency hopping techniques that leap from
frequency to frequency. Listening to one frequency will get you just minute parts of the
message. Trying to listen into a full conversation requires you to know the frequencies to hop
too, information that is not shared to those devices not included in the communication.

PIN numbers are often used by devices such as Mobile phones and Headsets etc. The PIN
number is supplied with a device and is required to be entered to be checked by the program.
Note: This is not the same as the Passkey that is passed programmatically, but a User
entered PIN Number. PIN numbers are generally used to inform the device that you are the
legitimate owner to help prevent thieves from using the device. PIN numbers should not be
stored with the device for security reasons, just like you would not leave your PIN number
with your bank cards.

At the program and device level the communications can be set to be Authenticated and or
Encrypted, and the device can be recorded as a trusted device.

13.1.2 Authentication

Once pairing has been complete the two devices can elect to use Authentication. If
authentication is required any communication between the two devices may (depending on
the authentication settings) provoke a response and counter response wherein a challenge
key is sent and an appropriate response needs to be returned for the communications to be
authenticated. Fortunately this all happens behind the scenes and the exact details need not
concern us. What does concern us though is how to enable authentication.

The Authentication settings are held in two S Registers: S Register 500 for authentication on
outgoing calls and S Register 502 for authentication on incoming calls. A value of 1 enables
authentication, and a value of 0 disables it. Both authentication registers are set to 0
(disabled) by default.

To set the registers use the ATS<n>=<m> command.
For instance ATS500=1 enables Authentication on outgoing calls.

S Register Description Default value

500 Authentication mode for outgoing calls. Set to 1 to enable. 0

501 Encryption mode for outgoing calls. Set to 1 to enable. 0

502 Authentication mode for incoming calls. Set to 1 to enable. 0

503 Encryption mode for incoming calls. Set to 1 to enable. 0

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 70 Copyright © 2014-2017 Matrix TSL

13.1.3 Encryption

If at least one device requires authentication the communications can also be encrypted. The
two devices work out the encryption details between them. Once again fortunately behind the
scenes so we don’t need to worry about it. Encryption is handled in the same way as
Authentication, the only difference being that the two registers involved are. S Register 501
for encryption on outgoing calls and S Register 503 for encryption on incoming calls.

13.1.4 ATD and Authentication and Encryption

As mentioned last chapter the full ATD command is:
ATD<U><Y><bd_addr>,<uuid>
<U> and <Y> are authentication and encryption parameters and can be used instead of the
default S Register values to enable authentication and encryption for a particular connection.

If <U> is Specified (ie. ATDU<bd_addr>) then the connection will be authenticated. If <U> is
not specified then the value of S Register 500 is used instead to determine if authentication is
to take place.

If <Y> is Specified (ie. ATDU<bd_addr>) then the connection will be encrypted. If <Y> is not
specified then the value of S Register 501 is used instead to determine if encryption is to take
place.

For example:
ATDUY008924800352,1108 - Instigate connection to the headset device 008924800352 with
both authentication and encryption.

13.1.5 Trust

When two Bluetooth devices have instigated pairing and established communications
between themselves they are said to be in a trusted pair. Once a trusted pair has been
established they can communicate with each other without requiring discovery or
authentication. As this will obvious speed up the connection and communication processes
there are a number of commands and option available to control recording which devices you
trust.

Trusted Devices are cached and stored in a list. The Trusted Devices List is stored in Non
Volatile Memory allowing it to be retained during power off. The cache on the other hand is
temporary listing only the last device to pair and gain trust.

13.1.6 Trusted Devices AT Commands

The following AT Commands are for use in adding to, removing from and inquiring about the
Trusted Devises List:

AT+BTT - Add device to Trusted Devices list.
Adds the currently paired device in the Trusted devices list.

AT+BTT? - List trusted devices
Returns a list of the trusted devices by sending a series of responses comprising the
addresses of trusted devices and an OK device one the list has been sent. e.g.
012345678912
678901234567
OK

AT+BTW? – list current cached trusted device.
Returns the address of the device currently in the trusted device cache. Generally the device
currently paired to but not necessarily depending on the state of pairing.

AT+BTD<bd_addr> - remove device <bd_addr> from the Trusted Devices list.
Returns OK if successful. If device <bd_addr> is not in the list an OK will still be returned.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 71 Copyright © 2014-2017 Matrix TSL

AT+BTD* - remove all Trusted Devices.
This command clears all the devices from the Trusted Devices list. No confirmation is asked
for, so use with caution. Using this command can cause authentication problems with
currently paired devices so it is highly recommended to send an ATZ Reset command after
using AT+BTD* to prevent any communications problems.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 72 Copyright © 2014-2017 Matrix TSL

13.2 Exercise 9: Trust and Security

13.2.1 Introduction

Good communication is both secure and efficient. Security is required to block listeners and
prevent bogus communications. However security must not be too intrusive, and devices that
are known to be trusted need to be able to communicate without too much interference from
the virtual security guards.

13.2.2 Objectives

Create a program that pairs with another Bluetooth device.
Ensure that the connection is both Authenticated and Encrypted.

Give the device three options controlled by Switches on Port A:

1) List devices currently in the Trusted Devices List
2) Add the current device into the Trusted Devices List
3) Remove the current device from the Trusted Devices List.

Use the program to demonstrate use of the Trusted Devices List.

13.2.3 Pre-requisites

 An understanding of the Pairing process as detailed in Exercise 4.

 An understanding of Responses as detailed in Exercise 5.

13.2.4 Hardware/Software requirements

The following items of hardware are required:

 Both Bluetooth solutions are required for this Exercise.

 Solution 1 will be used to implement to objectives.

 Solution 2 will be used as the device to add or remove from the Trusted Devices list.

13.2.5 Exercise information

The Audio command commands are:

 AT+BTT – Add Device to Trusted Devices List.

 AT+BTD<bd_addr> – Remove Device from Trusted Devices List.

 AT+BTT? – List Devices on the Trusted Devices List.

For details of the AT Commands please see the AT Commands Set document.

13.2.6 Learning outcome

Primary learning outcomes for this exercise are:

 Principles of Security including:
- Authentication
- Encryption

 Using the Trusted Devices list including:
- Adding Devices
- Removing Devices
- Listing Devices

13.2.7 Further work

If you can get access to a Bluetooth phone, use your experience gained so far to determine
the address of the Bluetooth module, and set up a two way audio link with the mobile phone
using the Headset profile.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 73 Copyright © 2014-2017 Matrix TSL

13.3 Practical implementation: Trust and Security

13.3.1 General objectives

The general program resembles the Inquiry program created in the initial Discovery exercise
chapter. The main differences being that we are listing the Trusted Device list, not the Inquiry
responses. Tack on a Pairing at the start, which should be a familiar exercise by now, and we
have the majority of the program already sorted.

Authentication and Encryption are called for. These can be set using the S Registers.
However it be worth using ATDUY<bd_addr> as well to demonstrate both this method and to
make the point that S Registers can be changed programmatically unlike ATD<U><Y>.

The main loop needs to check the switches and respond to any inputs, sending the
appropriate AT command as needed. Once again this should be a relatively simple task at
this stage.

For this exercise use Switch A0 as ‘Add Device’, Switch A1 as ‘Remove Device’, and Switch
A2 as ‘List Trusted Devices’.

The commands that need to be sent are:

Switch Command Description

Switch A0 AT+BTT Add device to Trusted Device List

Switch A1 AT+BTD<bd_addr> Remove device from Trusted Device List

Switch A2 AT+BTT? List Devices in the Trusted Device List

A simple way of determining if the Add and Remove Device from the Trusted Device List
worked is to list the devices and look for the device address.

The LCD can be used to show not only the Trusted Device List, but to show status messages
for the other options.

13.3.2 Additional features

As an optional extra the base program can be extended to clear the Trusted Devices list, and
to display the current trusted device cache.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 74 Copyright © 2014-2017 Matrix TSL

14 Project design principles

Once students have become familiar with Bluetooth and have completed the exercises in this
course the next stage is to use that knowledge to design and implement a project.

The following two projects are examples of simple systems that can be designed with
Bluetooth.

Projects are for students to design and implement. The two examples here are just that:
examples, not a definitive list. It is always best for students to decide what project to develop,
get approval for the project, and to discuss the design implications before starting the project.

Design considerations are discussed below, but no code or instructions are given. They can
be used as a starting point for creating the project objectives and specifications.

14.1 Project - Baby monitor

A baby monitor is basically an audio system that has a transmitting device with a microphone
(the monitor by the baby), and a receiving device (the monitor by the parents with a speaker
output).

The basic blocks are two Bluetooth devices paired in a network. One functions as a
microphone monitoring the baby, whereas the other is a speaker transmitting the noises to
the parents.

Pairing will be required as otherwise you could be picking up signals from other baby monitors
and missing the one you actually need.

To accomplish the project you will need to pair the devices. Establish one as an audio
microphone and one as an audio speaker. The basic baby monitor program will be relatively
simple as it does not require much more than direct audio communications. To make the
project more effective, you should consider implementing additional features.

14.1.1 Extending the project with additional features

Consider ways to extend or improve the Baby monitor consider items such as the following:

 Multiple transmitters and receivers
Do you have more than one child to monitor? If so would multiple monitors be useful?
Will you be in the same room all the time or will you be popping back and forth between
the kitchen and living room? Maybe multiple receivers would be a good idea.
How to do this though? Will it be a set number of stations with set ID’s? Or will you need
to search for and discover the devices?

 2-way communication
Do you want to talk to baby? Maybe sing her a lullaby or just let them know you are near

What you need is a two-way system. However you don’t want the baby listening to you, or
being disturbed by the movie you are watching. So you will need to be selective in how to
implement the signal to baby’s monitor. Whilst this may seem simple it involves
coordinating the audio signals maybe across multiple receivers.

 Volume indicator
It would be bad if baby was crying her eyes out but you failed to realize because the
monitor was too quiet. Also what about your dinner guests getting annoyed because they
can hear every gurgle the baby makes? Does it need turning down a bit? Maybe a
volume control and indicator would help?

Tasks to consider include implementing an analogue dial or digital Up/Down buttons for
the volume, how to handle default just turned on settings if digital and working out how to
display a volume bar rather than a count.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 75 Copyright © 2014-2017 Matrix TSL

14.2 Project - Medical datalogger

One useful task for Bluetooth would be medical datalogging. Patients need monitoring but
wires and plugs tie the patient to the bed and create extra work for staff. Should a patient
need to go for tests, or even to the bathroom then equipment needs unplugged and moved, or
it needs to be mobile. And what is more mobile than Bluetooth? For patients, the ability to
move around gives them greater freedom and independence. For staff the system would
provide 24 hour datalogging, and ease of patient movement. Also data alerting can be used
allowing staff to be alerted to problems as they occur.

Such dataloggers would also aid in medical tests, such as in sports related datalogging where
traditional wired sensors would just get tin the way.

The first thing to consider for the remote datalogger is what data do you wish to log?
For a simple datalogger temperature could be monitored. Alternatively you could add other
sensors to the mix such as heart rate and respiration monitors.

Next you need to consider how frequently the data needs to be updated. For something like
temperature it could be every 5 or 10 minutes. For something more critical such as monitoring
heart rates you may need readings every few second. After deciding how frequently to send
data you need to decide upon a strategy for sending the data. Keep continuous contact?
Contact and send the data? Collect data for a while, and then batch send the data?

Next, are there any special cases to consider? Is a sudden rise in the heart rate important?
What about temperature? Should we be warned with flashing lights and alarm bells? Should it
set our beepers ringing so we know there is a problem. Or is a simple LED alert and a
message on an LCD display enough for us? Do we need to know now or in 5 minutes at the
next scheduled data broadcast?

14.2.1 Extending the project

Two obvious problems exist with the medical monitors compared to fixed monitors that restrict
movement.

 What happens when the patient walks out of network range?

 Where is the patient when the alarm goes off?

How can these problems be addressed? Can they be addressed?

Could layered networks be the key?
One network set up with alarm lights to indicate a patient in trouble nearby?
Security networks at the exits to warn patients they are leaving the network area?
Maybe additional technologies could be brought into play such as GPS to track patients?

Some of these issues are too big for addressing in a project, but would show how they have
considered if written up by the student in an ‘Extended/Additional features’ section of the
project report.

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 76 Copyright © 2014-2017 Matrix TSL

Part 3: Reference and Appendix

15 References and Appendix

Useful books and online links to aid in investigating and implementing Bluetooth.

15.1 References

15.1.1 Books

Morrow, Robert. Bluetooth operation and use 2002 McGraw Hill
Gratton, Dean A. Bluetooth Profiles: The definitive guide 2002 Prentice Hall

15.1.2 Websites

Bluetooth official site: http://www.bluetooth.com/
Wikipedia Bluetooth entry: http://en.wikipedia.org/wiki/Bluetooth
EZURiO BLU2i Device web site: http://www.ezurio.com/

AT command reference

15.1.3 Common AT Command parameters

<bd_addr> 12 character hexadecimal Bluetooth address.

<dev_class> 6 character hexadecimal Bluetooth device class code.

<uuid> 4 character hexadecimal Bluetooth UUID code.
Common <uuid> values include:
 Serial Port: 1101
 Headset: 1108
 Cordless telephone: 1109
 Fax 1111

<U> Authentication method. Value of S Register 500 if not specified.

<Y> Encryption method. Value of S Register 501 if not specified.

<n> Positive integer value

<m> Integer value that can be positive or negative. Hexadecimal numbers can
be used with a $ prefix. E.g. $4DE3

15.1.4 Important AT Commands list

AT Command Description Response

^^^ Enter local Command mode OK

!!! Enter Remote Command mode OK

AT Test command OK

ATS<n>=xxx Set S Register ‘n’ to value ‘xxx’ Value of S
Register <n>

ATS<n>? Request value of S Register <n> Value of S
Register <n> or
ERROR <string>

ATI<n> Request information from the device.
Generally used to retrieve the
<bd_addr> and S register values.

Useful values for <n> include:

Information or
OK as
appropriate.

http://www.bluetooth.com/
http://en.wikipedia.org/wiki/Bluetooth
http://www.ezurio.com/

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 77 Copyright © 2014-2017 Matrix TSL

0 – Product name/variant
4 – <bd_addr> of the device
5 – Manufacturer name

ATD<U><Y><bd_addr>,<uuid> Connect to the device with the
address <bd_addr>. The other
options add options such as
Encrypted, Authenticated or specify
profile types to connect to <uuid>

CONNECT
<bd_addr> AE
A= Authenticated
E = Encrypted

ATH Disconnect. Used to end
communications for Audio signals and
data sending.

-

ATZ Reset the Device OK

AT&W Save all S registers to Non Volatile
Memory so that they are preserved.

OK

AT+BTA<n> Control the Audio channel.
0 = off
1 = on

OK

AT+BTK=<string> Set Passkey to <string>.
<string> is a 0-8 numeric character
string.
<string> length 0 deletes the current
Passkey.

OK

AT+BTW<bd_addr> Initiate pairing with device <bd_addr> OK

ATO Note: letter ‘O’ not number 0.
Return to data mode

OK

AT+BTI Inquiry for device class code. <string>

15.1.5 Important S registers

Given how important the S Register settings are for the BLU2i device we have listed a
number of important S registers and their default values here. A full list can be found in the AT
Commands document on the CD supplied with the Bluetooth solution.

S Register Description Default value

0 Number of rings before answering 1

101 Default <uuid> value $1101

500 Authentication mode for outgoing calls. Set to 1 to enable. 0

501 Encryption mode for outgoing calls. Set to 1 to enable. 0

502 Authentication mode for incoming calls. Set to 1 to enable. 0

503 Encryption mode for incoming calls. Set to 1 to enable. 0

505 Delay before abandoning connection attempt. Used in
conjunction with the ATD command.

5

512 Specify power up state.
Value 0-7 sets state. See AT Commands document for
details.
Examples:
3 – connectable but not discoverable
4 – connectable and discoverable

1

536 Enable Remote Capture. Used for the !!! command
0 = Remote capture disabled.
1 = Remote capture enabled.

0

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 78 Copyright © 2014-2017 Matrix TSL

15.2 Appendix

15.2.1 How to…

Inquiry Command
Command:
Inquiry command

AT+BTI
Response:
List of device addresses of discoverable devices followed by OK

012345678912
012343567778
OK

Setting Discoverability (General Initialization commands)
Command:
Initialization Script
 ATS0=1

ATS512=4
ATS536=1
AT&W
ATZ

Initiate Pairing and connection
Command:
Passkey command

AT+BTK=”1234”
Response

OK
Command:
Initiate pairing command

AT+BTW0123456789012
Response

OK
PAIR 0 012345678912

Command:
Initiate connection command

ATD0123456789012
Response

CONNECT 012345678912

Remote and local command modes
Remote command mode = !!!
Local command mode = ^^^

Sequence is sent with guard gaps:
<guard time><Esc char><guard time>< Esc char ><guard time>< Esc char ><guard time>

Audio commands
AT+BTA0 = Audio channel disabled
AT+BTA1 = Audio channel enabled

Unsolicited Response sent of:

AUDIO <string>
Where <string> is ON, OFF or FAIL indicating current Audio channel status.

Trusted devices
AT+BTT – Add to trusted devices list
Response

Bluetooth Solution – Course Notes

EB639-80-11 Bluetooth Solution 79 Copyright © 2014-2017 Matrix TSL

OK or ERROR

AT+BTT? – List trusted devices
Response is Device address list of Trusted devices followed by OK

01234566789012
65478990002020
OK

Authentication and Encryption
ATD<U><Y><bd_addr>,<uuid>

Where:
U (ATDU…) enables Authentication.
Y (ATDY…) enables Encryption.

Implementing profiles (Headset example)
Set Device Class and UUID to match profile.
ATS101=<uuid>
AT+BTC<dev_class>

Headset example:
ATS101=1108
AT+BTC200404

Note additional profile related commands.

Headset example:
AT+VGS=<n> - Speaker volume (<n> = 0-15).
AT+VGM=<n> - Microphone volume (<n> = 0-15).
AT+CKPD=200 – Headset control button event.

